

MSL Package Manager

The MSL Package Manager allows one to install, uninstall, update, list and create packages
that are used at the Measurement Standards Laboratory of New Zealand [https://measurement.govt.nz/].

All MSL packages that start with msl- are part of the msl namespace [https://packaging.python.org/guides/packaging-namespace-packages/]. This allows one to
split sub-packages and modules across multiple, separate distribution packages while still
maintaining a single, unifying package structure.

All MSL packages are available as GitHub repositories [https://github.com/MSLNZ] and some have been published as PyPI packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22].

Contents

	Install

	CLI Usage

	API Usage

	API Documentation

	"create" ReadMe

	MSL Developers Guide

	License

	Authors

	Release Notes

Install the MSL Package Manager

To install the MSL Package Manager run:

pip install msl-package-manager

Dependencies

	Python 2.7, 3.5+

	setuptools [https://pypi.org/project/setuptools/]

	colorama [https://pypi.org/project/colorama/]

Command Line Interface

Once the MSL Package Manager has been installed you will be able to install,
uninstall, update, list and create MSL packages by using the command line interface.

You can also directly call these functions through the API.

Attention

Since MSL packages are part of a namespace [https://packaging.python.org/guides/packaging-namespace-packages/], uninstalling MSL packages using
pip uninstall msl-<packaage name> will break the namespace [https://packaging.python.org/guides/packaging-namespace-packages/]. Therefore, it is
recommended to use msl uninstall <packaage name> to uninstall MSL packages.

Note

The information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub and the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] on PyPI are
cached for 24 hours after you request information about a repository or package. After 24 hours a subsequent
request will automatically update the GitHub or PyPI cache. To force the cache to be updated immediately
include the --update-cache flag.

To read the help documentation from the command line, run

msl --help

or, for help about a specific command (for example, the install command), run

msl install --help

install

Install all MSL packages that are available

msl install --all

Install all MSL packages without asking for confirmation

msl install --all --yes

Install a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

msl install loadlib

Install a package from a git branch (by default the main branch is used if the package
is not available on PyPI)

msl install loadlib --branch develop

Install a package from a git tag

msl install loadlib --tag v0.3.0

Install a package from the hash value of a commit

msl install loadlib --commit 12591bade80321c3a165f7a7364ef13f568d622b

Install multiple MSL packages

msl install loadlib equipment qt

Install a specific version of a package (the package must be available as a PyPI package [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22])

msl install loadlib==0.6.0

Specify a version range of a package – make sure to surround the package and version range in quotes
(the package must be available as a PyPI package [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22])

msl install "loadlib>=0.4,<0.6"

Install a package and its
extra [https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies]
dependencies

msl install loadlib[com]

You can also use a wildcard, for example, to install all packages that start with pr-

msl install pr-*

You can also include all options that the pip install command accepts, run
pip help install for more details

msl install loadlib equipment qt --user --retries 10

uninstall

Uninstall all MSL packages (except for the msl-package-manager)

msl uninstall --all

Tip

You can also use remove as an alias for uninstall, e.g., msl remove --all

Note

To uninstall the MSL Package Manager run pip uninstall msl-package-manager.
Use with caution. If you uninstall the MSL Package Manager and you still have
other MSL packages installed then you may break the MSL namespace [https://packaging.python.org/guides/packaging-namespace-packages/].

Uninstall all MSL packages without asking for confirmation

msl uninstall --all --yes

Uninstall a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

msl uninstall loadlib

Uninstall multiple MSL packages

msl uninstall loadlib equipment qt

You can also include all options that the pip uninstall command accepts, run
pip help uninstall for more details

msl uninstall io qt --no-python-version-warning

update

Update all MSL packages that are installed

msl update --all

Tip

You can also use upgrade as an alias for update, e.g., msl upgrade --all

Update all MSL packages without asking for confirmation

msl update --all --yes

Update a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

msl update loadlib

Update to a package that was released <24 hours ago

msl update loadlib --update-cache

Update a package to a git branch (by default the main branch is used if the package
is not available on PyPI)

msl update loadlib --branch develop

Update a package to a git tag

msl update loadlib --tag v0.3.0

Update a package using the hash value of a commit

msl update loadlib --commit 12591bade80321c3a165f7a7364ef13f568d622b

Update multiple MSL packages

msl update loadlib equipment qt

You can also include all options that the pip install command accepts, run
pip help install for more details (the --upgrade option is automatically included by default)

msl update loadlib io --no-deps

list

List all MSL packages that are installed

msl list

List all MSL repositories [https://github.com/MSLNZ] that are available on GitHub

msl list --github

List all MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI

msl list --pypi

Update the GitHub cache and then list all repositories [https://github.com/MSLNZ] that are available

msl list --github --update-cache

Update the PyPI cache and then list all packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available

msl list --pypi --update-cache

Show the information about the repositories [https://github.com/MSLNZ] (includes information about the branches and the tags)
in JSON [https://www.json.org/] format

msl list --github --json

create

To create a new package called MyPackage, run

msl create MyPackage

This will create a new folder (in the current working directory) called msl-MyPackage.

To import the package you would use

>>> from msl import MyPackage

Running the create command attempts to determine your user name and email address from your git [https://git-scm.com] account
to use as the author and email values in the files that it creates. You do not need git [https://git-scm.com] to be installed
to use the create command, but it helps to make the process more automated. Optionally, you can specify the
name to use for the author and the email address by passing additional arguments

msl create MyPackage --author Firstname Lastname --email my.email@address.com

You can also specify where to create the package (instead of the default location which is in the current working
directory) by specifying a value for the --dir argument and to automatically accept the default author
name and email address values by adding the --yes argument

msl create MyPackage --yes --dir D:\create\package\here

To create a new package that is part of a different namespace [https://packaging.python.org/guides/packaging-namespace-packages/], you can run

msl create monochromator --namespace pr

To import this package you would use

>>> from pr import monochromator

To create a new package that is not part of a namespace [https://packaging.python.org/guides/packaging-namespace-packages/], run

msl create mypackage --no-namespace

To import this package you would use

>>> import mypackage

authorise

When requesting information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub there is a limit [https://developer.github.com/v3/#rate-limiting] to
how often you can send requests to the GitHub API (this is the primary reason for caching
the information). If you have a GitHub account and include your username and a personal access token [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] with each
request then this limit [https://developer.github.com/v3/#rate-limiting] is increased. If you do not have a GitHub account then you could
sign up [https://github.com/join?source=header-home] to create an account.

By running this command you will be asked for your GitHub username and personal access token [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] so that you send
authorised requests to the GitHub API.

msl authorise

Tip

You can also use authorize as an alias for authorise, e.g., msl authorize

Important

Your GitHub username and personal access token [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line] are saved in plain text in the file that is created.
You should set the file permissions provided by your operating system to ensure that your GitHub
credentials are safe.

API Usage

In cases where using the command-line interface is not desired, you can use the API
functions directly to install, uninstall, update, list and create MSL packages.

First, import the MSL Package Manager

>>> from msl import package_manager as pm

Tip

You can set what information is displayed on the screen by changing the Logging Levels [https://docs.python.org/3/library/logging.html#levels]

>>> import logging
>>> pm.set_log_level(logging.INFO)

install

install the msl-network and msl-qt packages

>>> pm.install('network', 'qt')
The following MSL packages will be INSTALLED:

msl-network 0.5.0 [PyPI]
msl-qt [GitHub]

Proceed (Y/n)?

uninstall

uninstall the msl-loadlib package

>>> pm.uninstall('loadlib')
The following MSL packages will be REMOVED:

 msl-loadlib 0.6.0

Proceed (Y/n)?

update

update the msl-loadlib package

>>> pm.update('loadlib')
The following MSL packages will be UPDATED:

 msl-loadlib 0.6.0 --> 0.7.0 [PyPI]

Proceed (Y/n)?

list

Display the information about the MSL packages that are installed, see info()

>>> pm.info()
 MSL Package Version Description
------------------- ------- --
 msl-loadlib 0.6.0 Load a shared library (and access a 32-bit library from 64-bit Python)
msl-package-manager 2.4.0 Install, uninstall, update, list and create MSL packages

Display the information about the MSL repositories [https://github.com/MSLNZ] that are available

>>> pm.info(from_github=True)
 MSL Repository Version Description
------------------- ------- --
 GTC 1.2.1 The GUM Tree Calculator for Python
 Quantity-Value 0.1.0 A package that supports physical quantity-correctness in Python code
 msl-equipment Manage and communicate with equipment in the laboratory
 msl-io Read and write data files
 msl-loadlib 0.7.0 Load a shared library (and access a 32-bit library from 64-bit Python)
 msl-network 0.5.0 Concurrent and asynchronous network I/O
msl-package-manager 2.4.0 Install, uninstall, update, list and create MSL packages
 msl-qt Custom Qt components for the user interface

Get a dictionary of all MSL packages that are installed()

>>> pkgs = pm.installed()
>>> for pkg, info in pkgs.items():
... print(pkg, info)
...
msl-loadlib {'version': '0.6.0', 'description': 'Load a shared library (and access a 32-bit library from 64-bit Python)', 'repo_name': 'msl-loadlib'}
msl-package-manager {'version': '2.4.0', 'description': 'Install, uninstall, update, list and create MSL packages', 'repo_name': 'msl-package-manager'}

Get a dictionary of all MSL repositories [https://github.com/MSLNZ] on GitHub, see github()

>>> pkgs = pm.github()
>>> for key, value in pkgs['msl-package-manager'].items():
... print('{}: {}'.format(key, value))
...
description: Install, uninstall, update, list and create MSL packages
version: 2.4.0
tags: ['v2.4.0', 'v2.3.0', 'v2.2.0', 'v2.1.0', 'v2.0.0', 'v1.5.1', 'v1.5.0', 'v1.4.1', 'v1.4.0', 'v1.3.0', 'v1.2.0', 'v1.1.0', 'v1.0.3', 'v1.0.2', 'v1.0.1', 'v1.0.0', 'v0.1.0']
branches: ['main']

Get a dictionary of all MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] on PyPI, see pypi()

>>> pkgs = pm.pypi()
>>> pkgs['msl-package-manager']
{'description': 'Install, uninstall, update, list and create MSL packages', 'version': '2.4.0'}

create

create a new MSL-MyPackage package

>>> pm.create('MyPackage', author='my name', email='my@email.com', directory='D:/create/here')
Created msl-MyPackage in 'D:/create/here\\msl-MyPackage'

authorise

Create an authorisation file for the GitHub API, see authorise()

>>> pm.authorise()
Enter your GitHub username [default: ...]: >?
Enter your GitHub personal access token: >?

MSL Package Manager API Documentation

The root package is

	msl.package_manager

	Install, uninstall, update, list and create MSL packages.

which has the following functions

	authorise([username, token])

	Create an authorisation file for the GitHub API.

	create(*names, **kwargs)

	Create a new package.

	github([update_cache])

	Get the information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub.

	info([from_github, from_pypi, update_cache, ...])

	Show information about MSL packages.

	install(*names, **kwargs)

	Install MSL packages.

	installed()

	Get the information about the MSL packages that are installed.

	set_log_level(level)

	Set the logging level [https://docs.python.org/3/library/logging.html#levels].

	pypi([update_cache])

	Get the information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI.

	uninstall(*names, **kwargs)

	Uninstall MSL packages.

	update(*names, **kwargs)

	Update MSL packages.

Package Structure

	msl.package_manager
	version_info

	msl.package_manager.authorise
	authorise()

	msl.package_manager.cli
	configure_parser()

	parse_args()

	main()

	msl.package_manager.cli_argparse
	ArgumentParser
	ArgumentParser.get_command_name()

	ArgumentParser.contains_package_names()

	add_argument_all()

	add_argument_branch()

	add_argument_package_names()

	add_argument_quiet()

	add_argument_tag()

	add_argument_update_cache()

	add_argument_yes()

	add_argument_disable_mslpm_version_check()

	add_argument_commit()

	msl.package_manager.cli_authorise
	add_parser_authorise()

	execute()

	msl.package_manager.cli_create
	add_parser_create()

	execute()

	msl.package_manager.cli_install
	add_parser_install()

	execute()

	msl.package_manager.cli_list
	add_parser_list()

	execute()

	msl.package_manager.cli_uninstall
	add_parser_uninstall()

	execute()

	msl.package_manager.cli_update
	add_parser_update()

	execute()

	msl.package_manager.create
	create()

	msl.package_manager.install
	install()

	msl.package_manager.uninstall
	uninstall()

	msl.package_manager.update
	update()

	msl.package_manager.utils
	get_email()

	get_username()

	github()

	info()

	installed()

	outdated_pypi_packages()

	pypi()

	set_log_level()

msl.package_manager package

Install, uninstall, update, list and create MSL packages.

The following constants are available.

	
msl.package_manager.version_info = version_info(major=2, minor=5, micro=4, releaselevel='final')

	Contains the version information as a (major, minor, micro, releaselevel) tuple.

	Type:

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]

msl.package_manager.authorise module

Create an authorisation file for the GitHub API.

	
msl.package_manager.authorise.authorise(username=None, token=None)

	Create an authorisation file for the GitHub API.

When requesting information about the MSL repositories [https://github.com/MSLNZ] that are
available on GitHub there is a limit to how often you can send
requests to the GitHub API. If you have a GitHub account and
include your username and a personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] with each
request then this limit is increased.

Important

Calling this function will create a file that contains your GitHub
username and a personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] so that GitHub requests are
authorised. Your username and personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] are saved in
plain text in the file that is created. You should set the file
permissions provided by your operating system to ensure that your
GitHub credentials are safe.

New in version 2.3.0.

Changed in version 2.4.0: Renamed the password keyword argument to token.

Changed in version 2.5.0: Renamed function to authorise.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The GitHub username. If None [https://docs.python.org/3/library/constants.html#None] then you will be
asked for the username.

	token (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A GitHub personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] for username. If None [https://docs.python.org/3/library/constants.html#None]
then you will be asked for the token.

msl.package_manager.cli module

Main entry point to either install, uninstall,
update, list or create
MSL packages using the command-line interface (CLI).

	
msl.package_manager.cli.configure_parser()

	ArgumentParser: Returns the argument parser.

	
msl.package_manager.cli.parse_args(args)

	Parse arguments.

	Parameters:

	args (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The arguments to parse.

	Returns:

	An argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] or None [https://docs.python.org/3/library/constants.html#None] if there was an error.

	
msl.package_manager.cli.main(*args)

	Main entry point to either install, uninstall,
update, list or create
MSL packages using the CLI.

msl.package_manager.cli_argparse module

Custom argument parsers.

	
class msl.package_manager.cli_argparse.ArgumentParser(*args, **kwargs)

	Bases: ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

A custom argument parser.

	
get_command_name()

	str [https://docs.python.org/3/library/stdtypes.html#str]: Returns the name of the command, e.g., install, list, …

	
contains_package_names(quiet=False)

	Check whether package names were specified or the --all flag was used.

Changed in version 2.5.0: Added the quiet keyword argument.

	Parameters:

	quiet (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to suppress the error message from being shown.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether package names were specified or the --all flag was used.

	
msl.package_manager.cli_argparse.add_argument_all(parser)

	Add an --all argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_branch(parser)

	Add a --branch argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_package_names(parser)

	Add a --names argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_quiet(parser)

	Add a --quiet argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_tag(parser)

	Add a --tag argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_update_cache(parser)

	Add an --update-cache argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_yes(parser)

	Add a --yes argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_disable_mslpm_version_check(parser)

	Add a --disable-mslpm-version-check argument to the parser.

	
msl.package_manager.cli_argparse.add_argument_commit(parser)

	Add a --commit argument to the parser.

msl.package_manager.cli_authorise module

Command line interface for the authorise command.

	
msl.package_manager.cli_authorise.add_parser_authorise(parser, name='authorise')

	Add the authorise command to the parser.

	
msl.package_manager.cli_authorise.execute(args, parser)

	Executes the authorise command.

msl.package_manager.cli_create module

Command line interface for the create command.

	
msl.package_manager.cli_create.add_parser_create(parser)

	Add the create command to the parser.

	
msl.package_manager.cli_create.execute(args, parser)

	Executes the create command.

msl.package_manager.cli_install module

Command line interface for the install command.

	
msl.package_manager.cli_install.add_parser_install(parser)

	Add the install command to the parser.

	
msl.package_manager.cli_install.execute(args, parser)

	Executes the install command.

msl.package_manager.cli_list module

Command line interface for the list command.

	
msl.package_manager.cli_list.add_parser_list(parser)

	Add the list command to the parser.

	
msl.package_manager.cli_list.execute(args, parser)

	Executes the list command.

msl.package_manager.cli_uninstall module

Command line interface for the uninstall command.

	
msl.package_manager.cli_uninstall.add_parser_uninstall(parser, name='uninstall')

	Add the uninstall command to the parser.

	
msl.package_manager.cli_uninstall.execute(args, parser)

	Executes the uninstall command.

msl.package_manager.cli_update module

Command line interface for the update command.

	
msl.package_manager.cli_update.add_parser_update(parser, name='update')

	Add the update command to the parser.

	
msl.package_manager.cli_update.execute(args, parser)

	Executes the update command.

msl.package_manager.create module

Create a new package.

	
msl.package_manager.create.create(*names, **kwargs)

	Create a new package.

	Parameters:

	
	*names – The name(s) of the package(s) to create.

	**kwargs –
	
	author – str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of the author to use for the new package. If None [https://docs.python.org/3/library/constants.html#None]
then uses utils.get_username() to determine the author’s name.
Default is None [https://docs.python.org/3/library/constants.html#None].

	
	directory – str [https://docs.python.org/3/library/stdtypes.html#str]
	The directory to create the new package(s) in. If None [https://docs.python.org/3/library/constants.html#None]
then creates the new package(s) in the current working directory.
Default is None [https://docs.python.org/3/library/constants.html#None].

	
	email – str [https://docs.python.org/3/library/stdtypes.html#str]
	The author’s email address. If None [https://docs.python.org/3/library/constants.html#None] then uses
utils.get_email() to determine the author’s email address.
Default is None [https://docs.python.org/3/library/constants.html#None].

	
	namespace – str [https://docs.python.org/3/library/stdtypes.html#str]
	The namespace that the package belongs to. If namespace is None [https://docs.python.org/3/library/constants.html#None]
or an empty string then create a new package that is not part of a namespace.
Default is the 'msl' namespace.

	
	yes – bool [https://docs.python.org/3/library/functions.html#bool]
	If True [https://docs.python.org/3/library/constants.html#True] then don’t ask for verification for the author name
and for the email address. This argument is only used if you do not
specify the author or the email value. The verification step allows
you to change the value that was automatically determined before the
package is created. The default is to ask for verification before creating
the package if the author or the email value was not specified.
Default is False [https://docs.python.org/3/library/constants.html#False].

msl.package_manager.install module

Install MSL packages.

	
msl.package_manager.install.install(*names, **kwargs)

	Install MSL packages.

MSL packages can be installed from PyPI packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] (only if a release has been
uploaded to PyPI) or from GitHub repositories [https://github.com/MSLNZ].

Note

If the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] are available on PyPI then PyPI is used as the default
location to install the package. If you want to force the installation to occur
from the main branch from GitHub (even though the package is available on PyPI)
then set branch='main'. If the package is not available on PyPI
then the main branch is used as the default installation location.

Changed in version 2.4.0: Added the pip_options keyword argument.

Changed in version 2.5.0: Added the commit keyword argument. The default name of a
repository branch changed to main.

	Parameters:

	
	*names – The name(s) of the MSL package(s) to install. If not specified then
install all MSL packages that begin with the msl- prefix. The
msl- prefix can be omitted (e.g., 'loadlib' is equivalent to
'msl-loadlib'). Also accepts shell-style wildcards (e.g., 'pr-*').

	**kwargs –
	
	branch – str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of a git branch to install. If not specified and neither a
tag nor commit was specified then the main branch is used to
install a package if it is not available on PyPI.

	
	commit – str [https://docs.python.org/3/library/stdtypes.html#str]
	The hash value of a git commit to use to install a package.

	
	tag – str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of a git tag to use to install a package.

	
	update_cache – bool [https://docs.python.org/3/library/functions.html#bool]
	The information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI and about
the repositories [https://github.com/MSLNZ] that are available on GitHub are cached to use for subsequent
calls to this function. After 24 hours the cache is automatically updated. Set
update_cache to be True [https://docs.python.org/3/library/constants.html#True] to force the cache to be updated when you call
this function. Default is False [https://docs.python.org/3/library/constants.html#False].

	
	yes – bool [https://docs.python.org/3/library/functions.html#bool]
	If True [https://docs.python.org/3/library/constants.html#True] then don’t ask for confirmation before installing.
The default is False [https://docs.python.org/3/library/constants.html#False] (ask before installing).

	
	pip_options – list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]
	Optional arguments to pass to the pip install command,
e.g., ['--retries', '10', '--user']

msl.package_manager.uninstall module

Uninstall MSL packages.

	
msl.package_manager.uninstall.uninstall(*names, **kwargs)

	Uninstall MSL packages.

Changed in version 2.4.0: Added the pip_options keyword argument.

	Parameters:

	
	*names – The name(s) of the MSL package(s) to uninstall. If not specified then
uninstall all MSL packages (except for the MSL Package Manager –
in which case use pip uninstall msl-package-manager). The
msl- prefix can be omitted (e.g., 'loadlib' is equivalent to
'msl-loadlib'). Also accepts shell-style wildcards (e.g., 'pr-*').

	**kwargs –
	
	yes – bool [https://docs.python.org/3/library/functions.html#bool]
	If True [https://docs.python.org/3/library/constants.html#True] then don’t ask for confirmation before uninstalling.
The default is False [https://docs.python.org/3/library/constants.html#False] (ask before uninstalling).

	
	pip_options – list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]
	Optional arguments to pass to the pip uninstall command,
e.g., ['--no-python-version-warning']

msl.package_manager.update module

Update MSL packages.

	
msl.package_manager.update.update(*names, **kwargs)

	Update MSL packages.

MSL packages can be updated from PyPI packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] (only if a release has been
uploaded to PyPI) or from GitHub repositories [https://github.com/MSLNZ].

Note

If the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] are available on PyPI then PyPI is used as the default
URI [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier] to update the package. If you want to force the update to occur
from the main branch of the GitHub repository [https://github.com/MSLNZ]
then set branch='main'. If the package is not available on PyPI
then the main branch is used as the default update URI [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier].

Changed in version 2.4.0: Added the pip_options keyword argument.

Changed in version 2.5.0: Added the include_non_msl and commit keyword arguments. The default
name of a repository branch changed to main.

	Parameters:

	
	*names – The name(s) of the MSL package(s) to update. If not specified then
update all MSL packages. The msl- prefix can be omitted (e.g.,
'loadlib' is equivalent to 'msl-loadlib'). Also accepts
shell-style wildcards (e.g., 'pr-*').

	**kwargs –
	
	branch – str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of a git branch to use to update the package(s) to.

	
	commit – str [https://docs.python.org/3/library/stdtypes.html#str]
	The hash value of a git commit to use to update a package.

	
	tag – str [https://docs.python.org/3/library/stdtypes.html#str]
	The name of a git tag to use to update a package.

	
	update_cache – bool [https://docs.python.org/3/library/functions.html#bool]
	The information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI and about
the repositories [https://github.com/MSLNZ] that are available on GitHub are cached to use for subsequent
calls to this function. After 24 hours the cache is automatically updated. Set
update_cache to be True [https://docs.python.org/3/library/constants.html#True] to force the cache to be updated when you call
this function. Default is False [https://docs.python.org/3/library/constants.html#False].

	
	yes – bool [https://docs.python.org/3/library/functions.html#bool]
	If True [https://docs.python.org/3/library/constants.html#True] then don’t ask for confirmation before updating.
The default is False [https://docs.python.org/3/library/constants.html#False] (ask before updating).

	
	pip_options – list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]
	Optional arguments to pass to the pip install --upgrade command,
e.g., ['--upgrade-strategy', 'eager']

	
	include_non_msl – bool [https://docs.python.org/3/library/functions.html#bool]
	If True [https://docs.python.org/3/library/constants.html#True] then also update all non-MSL packages.
The default is False [https://docs.python.org/3/library/constants.html#False] (only update the specified
MSL packages). Warning, enable this option with caution.

Important

If you specify a branch, commit or tag then the update will be forced.

msl.package_manager.utils module

Functions for the API.

	
msl.package_manager.utils.get_email()

	Try to determine the user’s email address.

If git [https://git-scm.com] is installed then it returns the user.email parameter from the user’s git [https://git-scm.com]
account to use as the user’s email address. If git [https://git-scm.com] is not installed then returns
None [https://docs.python.org/3/library/constants.html#None].

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None] – The user’s email address.

	
msl.package_manager.utils.get_username()

	Determine the name of the user.

If git [https://git-scm.com] is installed then it returns the user.name parameter from the user’s git [https://git-scm.com]
account. If git [https://git-scm.com] is not installed or if the user.name parameter does not exist
then getpass.getuser() [https://docs.python.org/3/library/getpass.html#getpass.getuser] is used to determine the username.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The user’s name.

	
msl.package_manager.utils.github(update_cache=False)

	Get the information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub.

	Parameters:

	update_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The information about the repositories [https://github.com/MSLNZ] that are available on GitHub are
cached to use for subsequent calls to this function. After 24 hours the
cache is automatically updated. Set update_cache to be True [https://docs.python.org/3/library/constants.html#True]
to force the cache to be updated when you call this function.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub.

	
msl.package_manager.utils.info(from_github=False, from_pypi=False, update_cache=False, as_json=False)

	Show information about MSL packages.

The information about the packages can be either those that are installed or
those that are available as repositories [https://github.com/MSLNZ] on GitHub or as packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] on PyPI.

The default action is to show the information about the MSL packages that are installed.

	Parameters:

	
	from_github (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show the information about the MSL repositories [https://github.com/MSLNZ] that are available on GitHub.

	from_pypi (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show the information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI.

	update_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI and about
the repositories [https://github.com/MSLNZ] that are available on GitHub are cached to use for subsequent
calls to this function. After 24 hours the cache is automatically updated. Set
update_cache to be True [https://docs.python.org/3/library/constants.html#True] to force the cache to be updated when you call
this function. If from_github is True [https://docs.python.org/3/library/constants.html#True] then the cache for the
repositories [https://github.com/MSLNZ] is updated. If from_pypi is True [https://docs.python.org/3/library/constants.html#True] then the cache for the
packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] is updated.

	as_json (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show the information in JSON [https://www.json.org/] format. If enabled then the information
about the MSL repositories [https://github.com/MSLNZ] includes additional information about the branches
and tags.

	
msl.package_manager.utils.installed()

	Get the information about the MSL packages that are installed.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The information about the MSL packages that are installed.

	
msl.package_manager.utils.outdated_pypi_packages(msl_installed=None)

	Check PyPI for all non-MSL packages that are outdated.

New in version 2.5.0.

	Parameters:

	msl_installed (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The MSL packages that are installed. If not specified
then calls installed() to determine the
installed packages.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The information about the PyPI packages that are outdated.

	
msl.package_manager.utils.pypi(update_cache=False)

	Get the information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI.

	Parameters:

	update_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI are
cached to use for subsequent calls to this function. After 24 hours the
cache is automatically updated. Set update_cache to be True [https://docs.python.org/3/library/constants.html#True]
to force the cache to be updated when you call this function.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The information about the MSL packages [https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22] that are available on PyPI.

	
msl.package_manager.utils.set_log_level(level)

	Set the logging level [https://docs.python.org/3/library/logging.html#levels].

	Parameters:

	level (int [https://docs.python.org/3/library/functions.html#int]) – A value from one of the Logging Levels [https://docs.python.org/3/library/logging.html#levels].

“create” ReadMe

The MSL package that is created by running the msl create command contains two scripts
to help make development easier: setup.py and condatests.py.

setup.py

The setup.py file (that is created by running msl create) includes additional commands
that can be used to run unit tests and to create the documentation for your MSL package.

Note

The Python packages that are required to execute the following commands (e.g., pytest [https://doc.pytest.org/en/latest/] and sphinx [https://www.sphinx-doc.org/en/master/]) are
automatically installed (into the .eggs directory) if they are not already installed in your
environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]. Therefore, the first time that you run the following commands it will take longer to finish
executing the command because these packages (and their own dependencies) need to be downloaded then installed.
If you prefer to install these packages directly into your environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] you can run
conda install pytest pytest-cov pytest-runner sphinx sphinx_rtd_theme, or if you are using pip [https://pip.pypa.io/en/stable/] as
your package manager then replace conda with pip.

The following command will run all test modules that pytest [https://doc.pytest.org/en/latest/] finds as well as testing all the example code that is
located within the docstrings of the source code and in the .rst files in the docs/ directory. To modify the
options that pytest [https://doc.pytest.org/en/latest/] will use to run the tests you can edit the [tool:pytest] section in setup.cfg.
A coverage [https://coverage.readthedocs.io/en/latest/index.html] report is created in the htmlcov/index.html file. This report provides an overview of which parts
of the code have been executed during the tests.

python setup.py tests

Warning

pytest [https://doc.pytest.org/en/latest/] can only load one configuration file and uses the following search order to find that file:

	pytest.ini - used even if it does not contain a [pytest] section

	tox.ini - must contain a [pytest] section to be used

	setup.cfg - must contain a [tool:pytest] section to be used

See the configuration file section for an example if you want to run pytest [https://doc.pytest.org/en/latest/] with custom options without
modifying any of these configuration files.

Create the documentation files, uses sphinx-build [https://www.sphinx-doc.org/en/master/man/sphinx-build.html].
The documentation can be viewed by opening docs/_build/html/index.html

python setup.py docs

Automatically create the API documentation from the docstrings in the source code, uses
sphinx-apidoc [https://www.sphinx-doc.org/en/master/man/sphinx-apidoc.html]. The files are saved to
docs/_autosummary

python setup.py apidocs

Attention

By default, the docs/_autosummary directory that is created by running this command is automatically generated
(overwrites existing files). As such, it is excluded from the repository (i.e., this directory is specified in the
.gitignore file). If you want to keep the files located in docs/_autosummary you should rename the directory
to, for example, docs/_api and then the changes made to the files in the docs/_api directory will be kept
and can be included in the repository.

You can view additional help for setup.py by running

python setup.py --help

or

python setup.py --help-commands

condatests.py

Important

The following assumes that you are using conda [https://docs.conda.io/en/latest/] as your environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] manager.

Additionally, there is a condatests.py file that is created by running msl create. This
script will run the tests in all specified conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s. At the time of writing this script, tox [https://tox.readthedocs.io/en/latest/] and
conda [https://docs.conda.io/en/latest/] were not compatible [https://github.com/tox-dev/tox/issues/273] and so this script provided a way around this issue.

You can either pass options from the command line or by creating a configuration file.

command line

condatests.py accepts the following command-line arguments:

	--create - the Python version numbers to use to create conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s (e.g., 2 3.6 3.7.2)

	--include - the conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s to include (supports regex)

	--exclude - the conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s to exclude (supports regex)

	--requires - additional packages to install for the tests (can also be a path to a file [https://docs.conda.io/projects/conda/en/latest/commands/install.html#Named%20Arguments])

	--command - the command to execute with each conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]

	--ini - the path to a configuration file

	--list - list the conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that will be used for the tests and then exit

You can view the help for condatests.py by running

python condatests.py --help

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]'s using the python -m pytest command.
This assumes that a configuration file does not exist (which could change the default options).

python condatests.py

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that include py in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name

python condatests.py --include py

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s but exclude those that contain py26 and py33 in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name

python condatests.py --exclude py26 py33

Tip

Since a regex search is used to filter the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] names that follow the --exclude
(and also the --include) option, the above command could be replaced with
--exclude "py(26|33)". Surrounding the regex pattern with a " is necessary so that the
OR, |, regex symbol is not mistaken for a pipe [https://en.wikipedia.org/wiki/Pipeline_(Unix)] symbol.

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that include dev in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name but exclude
those with dev33 in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name

python condatests.py --include dev --exclude dev33

Create new conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s for the specified Python versions (if the minor or micro version
numbers are not specified then the latest Python version that is available to conda will be installed).
After the test finishes the newly-created environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] is removed. For example, the following
command will create environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s for the latest Python 2.x.x version, for the latest Python 3.6.x
version and for Python 3.7.4 and exclude all environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that already exist

python condatests.py --create 2 3.6 3.7.4 --exclude .

You can also mix the --create, --include and --exclude arguments

python condatests.py --create 3.7 --include dev --exclude dev33

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s using the command nosetests

python condatests.py --command nosetests

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s using the command unittest discover -s tests/

python condatests.py --command "unittest discover -s tests/"

Run the tests with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s using the command unittest discover -s tests/ and ensure
that all the packages specified in a requirements file [https://docs.conda.io/projects/conda/en/latest/commands/install.html#Named%20Arguments] are installed in each environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]

python condatests.py --command "unittest discover -s tests/" --requires my_requirements.txt

List all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that will be used for the tests and then exit

python condatests.py --list

You can also use –show as an alias for –list

python condatests.py --show

List the conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that include dev in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name and then exit

python condatests.py --include dev --list

Specify the path to a condatests.ini file

python condatests.py --ini C:\Users\Me\my_condatests_config.ini

configuration file

In addition to passing command line options, you can also save the options in an condatests.ini
configuration file. This is a standard ini-style configuration file with the options create, include,
exclude, command and requires specified under the [envs] section.

If a condatests.ini configuration file exists in the current working directory then it will
automatically be loaded by running

python condatests.py

Alternatively, you can also specify the path to the configuration file from the command line

python condatests.py --ini C:\Users\Me\my_condatests_config.ini

You can pass in command-line arguments as well as reading from the configuration file. The following
will load the condatests.ini file in the current working directory, print the conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s
that will be used for the tests and then exit

python condatests.py --show

Since every developer can name their environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s to be anything that they want, the condatests.ini
file is included in .gitignore.

The following are example condatests.ini files.

Example 1: Run python -m pytest (see setup.py) with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s except
for the base environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]

[envs]
exclude=base

Example 2: Run python -m pytest with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that include the text py in the name
of the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] but exclude the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that contain py33 in the name (recall that a regex
search is used to filter the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] names)

[envs]
include=py
exclude=py33

Example 3: Run python -m pytest only with newly-created conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s, exclude all
environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s that already exist and ensure that scipy is installed in each new environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]
(if the minor or micro version numbers of the Python environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s are not specified then the latest
Python version that is available to conda will be installed)

[envs]
create=2 3.5 3.6 3.7
exclude=.
requires=scipy

Example 4: Run python -m pytest with newly-created conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s and all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s
that already exist that contain the text dev in the name of the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] except for the dev33 environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]

[envs]
create=3.6 3.7.3 3.7.4
include=dev
exclude=dev33

Example 5: Run unittest, for all modules in the tests directory, with all conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s
that include the text dev in the environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] name

[envs]
include=dev
command=unittest discover -s tests/

Example 6: Run pytest [https://doc.pytest.org/en/latest/] with customized options (i.e., ignoring any pytest.ini, tox.ini or setup.cfg
files that might exist) with the specified conda environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html]s.

[envs]
create=3.7
include=dev27 myenvironment py36
command=pytest -c condatests.ini

[pytest]
addopts =
 -x
 --verbose

Note

The environment [https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html] names specified in the create, include, exclude and requires option can
be separated by a comma, by whitespace or both. So, include=py27,py36,py37, include=py27 py36 py37
and include=py27, py36, py37 are all equivalent.

MSL Developers Guide

This guide [1] shows you how to:

	Install and set up Python, Git and PyCharm

	Commit changes to a repository

	Use the setup.py and condatests.py scripts

	Edit source code using the style guide

and describes one way to set up an environment to develop Python programs.
The guide does not intend to imply that the following is the best way to
develop programs in the Python language.

Install and set up Python, Git and PyCharm

This section uses the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib] as an example of a repository that one would like
to clone [https://git-scm.com/docs/git-clone] and import into PyCharm [https://www.jetbrains.com/pycharm/download/#section=windows].

The following instructions are written for a Windows x64 operating system. To install the same software on
a Debian architecture, such as Ubuntu [https://www.ubuntu.com/], run

sudo apt update
sudo apt install git snapd
sudo snap install pycharm-community --classic
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda*

and answer the questions that you are asked. After running these commands you can follow the appropriate
steps below.

Attention

The screenshots below might not represent exactly what you see during the installation or configuration
procedure as this depends on the version of the software that you are using.

	Download a 64-bit version of Miniconda [https://docs.conda.io/en/latest/miniconda.html].

	Install Miniconda [https://docs.conda.io/en/latest/miniconda.html]. It is recommended to Register Anaconda but not to Add it to your PATH.

[image: _images/anaconda_setup.png]

	Open the Anaconda Command Prompt

[image: _images/anaconda_prompt.png]
and then enter the following command to update all Miniconda [https://docs.conda.io/en/latest/miniconda.html] packages:

conda update --all

	It is usually best to create a new virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] for each Python project that you are working on to avoid
possible conflicts between the packages that are required for each Python project or to test the code against
different versions of Python (i.e., it solves the Project X depends on version 1.x but Project Y depends on
version 4.x dilemma).

In the Anaconda Command Prompt create a new py37 virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] (you can pick another name, py37
is just an example of a name) and install the Python 3.7 interpreter in this environment (NOTE: You can also
create conda environment’s from within PyCharm if you are not comfortable with the command line, see Step 9)

conda create --name py37 python=3.7

You may also want to create another virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] so that you can run the code against another Python
version. For example, here is an example of how to create a Python 2.7 virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] named py27:

conda create --name py27 python=2.7

	Create a GitHub [https://github.com/join?source=header-home] account (if you do not already have one).

	Download and install git [https://git-scm.com/downloads] (accept the default settings). This program is used as the version control system [https://en.wikipedia.org/wiki/Version_control].

	Download and install the Community Edition of PyCharm [https://www.jetbrains.com/pycharm/download/#section=windows] to use as an IDE [https://en.wikipedia.org/wiki/Integrated_development_environment]. This IDE [https://en.wikipedia.org/wiki/Integrated_development_environment] is free to use and it provides
a lot of the features that one expects from an IDE [https://en.wikipedia.org/wiki/Integrated_development_environment]. When asked to Create associations check the .py checkbox
and you can also create a shortcut on the desktop (you can accept the default settings for everything else that
you are asked during the installation)

[image: _images/pycharm_installation1.png]

	Run PyCharm and perform the following:

	Import settings from a previous version of PyCharm (if available)

[image: _images/pycharm_installation2.png]

	Select the default editor theme (you can also change the theme later) and click
Skip Remaining and Set Defaults

[image: _images/pycharm_installation3.png]

	Select the Git option from Check out from Version Control

[image: _images/pycharm_github_checkout.png]

	Click the Log in to Github… button

[image: _images/pycharm_github_login1.png]
and then enter your GitHub [https://github.com/join?source=header-home] account information (see Step 5 above) and click Log In

[image: _images/pycharm_github_login2.png]

	Clone [https://git-scm.com/docs/git-clone] the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib]. Specify the Directory where you want to clone
the repository (NOTE: the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib] will only appear if you are part of the
MSLNZ [https://github.com/MSLNZ] organisation on GitHub. A list of your own repositories will be available.)

[image: _images/pycharm_github_clone.png]

	Open the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib] in PyCharm

[image: _images/pycharm_github_open.png]

	Add the py37 virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] that was created in Step 4 as the Project Interpreter
(NOTE: you can also create a new conda environment in Step 9d)

	Press CTRL+ALT+S to open the Settings window

	Go to Project Interpreter and click on the gear button in the top-right corner

[image: _images/pycharm_interpreter1.png]

	Select Add

[image: _images/pycharm_interpreter2.png]

	Select Conda Environment \(\rightarrow\) Existing environment and select the
py37 virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] that was created in Step 4 and then click OK
You can also create a new environment if you want

[image: _images/pycharm_interpreter3.png]

	Click Apply then OK

	If you created a py27 virtual environment [https://conda.io/docs/user-guide/tasks/manage-environments.html] then repeat Steps 9b-9d to add the
Python 2.7 environment

	The MSL-LoadLib project is now shown in the Project window and you can begin to modify the code.

Commit changes to a repository

The following is only a very basic example of how to upload changes to the source code to the
MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib] by using PyCharm. See this [https://git-scm.com/doc] link for a much more detailed overview
on how to use git.

Note

This section assumes that you followed the instructions from Install and set up Python, Git and PyCharm.

	Make sure that the git Branch [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell] you are working on is up to date by performing a Pull [https://git-scm.com/docs/git-pull].

	Click on the blue, downward-arrow button in the top-right corner to update the project

[image: _images/pycharm_github_pull_1.png]

	Select the options for how you want to update the project (the default options are usually okay) and click
OK

[image: _images/pycharm_github_pull_2.png]

	Make changes to the code.

	When you are happy with the changes that you have made you should Push [https://git-scm.com/docs/git-push] the changes to the
MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib].

	Click on the green, check-mark button in the top-right corner to commit the changes

[image: _images/pycharm_github_commit1.png]

	Select the file(s) that you want to upload to the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib], add a useful message for the
commit and then select Commit and Push.

[image: _images/pycharm_github_commit2.png]

	Finally, Push [https://git-scm.com/docs/git-push] the changes to the MSL-LoadLib repository [https://github.com/MSLNZ/msl-loadlib].

[image: _images/pycharm_github_commit3.png]

Use the setup.py and condatests.py scripts

MSL packages come with two scripts to help make development easier: setup.py and
condatests.py. See the “create” ReadMe page for an overview on how to use these scripts.

Edit source code using the style guide

Please adhere to the following style guides when contributing to MSL packages. With multiple people contributing
to the code base it will be easier to understand if there is a coherent structure to how the code is written:

Note

This section assumes that you followed the instructions from Install and set up Python, Git and PyCharm.

	Follow the PEP 8 [https://peps.python.org/pep-0008/] style guide when possible (by default, PyCharm will notify you if you do not).

	Docstrings must be provided for all public classes, methods and functions.

	For the docstrings use the NumPy Style [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard] format.

	Press CTRL+ALT+S to open the Settings window and navigate to Tools
\(\rightarrow\) Python Integrated Tools to
select the NumPy docstring format and then click Apply then OK.

[image: _images/pycharm_numpy_style.png]

	Do not use print() [https://docs.python.org/3/library/functions.html#print] statements to notify the end-user of the status of a program. Use logging [https://docs.python.org/3/library/logging.html#module-logging] instead.
This has the advantage that you can use different logging levels [https://docs.python.org/3/library/logging.html#logging-levels] to decide what message types are displayed and
which are filtered and you can also easily redirect all messages, for example, to a GUI widget or to a file. The
django project [https://docs.djangoproject.com/en/3.0/topics/logging/] has a nice overview on how to use Python’s builtin logging module.

[1]
Software is identified in this guide in order to specify the installation and configuration procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the Measurement
Standards Laboratory of New Zealand, nor is it intended to imply that the software identified are
necessarily the best available for the purpose.

License

MIT License

Copyright (c) 2017 - 2023, Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Developers

	Joseph Borbely <joseph.borbely@measurement.govt.nz>

Release Notes

Version 2.5.4 (2023-06-16)

This release will be the last to support Python 2.7, 3.5, 3.6 and 3.7

	Added

	support for Python 3.11

	Fixed

	do not update MSL packages that are installed in editable mode

	issue #11 [https://github.com/MSLNZ/msl-package-manager/issues/11] -
TypeError: Object of type Requirement is not JSON serializable

	issue #10 [https://github.com/MSLNZ/msl-package-manager/issues/10] -
GitHub rate-limit error message repeats

	issue #9 [https://github.com/MSLNZ/msl-package-manager/issues/9] -
PyPI regex pattern is invalid for the /search endpoint

Version 2.5.2 (2021-11-08)

	Added

	support for Python 3.10

	Fixed

	increased the GitHub API pagination to 100 repositories per page

	issue #8 [https://github.com/MSLNZ/msl-package-manager/issues/8] -
Invalid URL fragment with pip dependency resolver

Version 2.5.1 (2021-08-24)

	Fixed

	issue #7 [https://github.com/MSLNZ/msl-package-manager/issues/7] -
Updating non-MSL packages can install the wrong version

Version 2.5.0 (2021-05-17)

	Added

	install or update a package from the hash value of a commit

	a docs key to extras_require in setup.py

	update all outdated, non-MSL packages from PyPI

	Changed

	renamed the authorize function to authorise

	use ~/.msl/package-manager as the HOME directory to save the
GitHub token and the PyPI/GitHub caches.

	use 4x additive --quiet flag (for silencing DEBUG,
INFO, WARNING and ERROR logging levels)

	direct logging messages less than WARNING to sys.stdout and
greater than or equal to WARNING to sys.stderr

	the default name of a repository branch is now main for the
install and update commands

	use the conda-forge channel (instead of the anaconda channel) when
installing packages in condatests.py

Version 2.4.1 (2021-02-20)

	Added

	support for Python 3.9

	Changed

	only include the --force-reinstall flag when updating a package from
GitHub (previously this flag was included when updating from PyPI as well)

	include the --no-deps flag if no extras require option is specified
when updating a package from GitHub

	no longer use the XMLRPC API to get the information about
the MSL packages that are available on PyPI

Version 2.4.0 (2020-04-20)

	Added

	the pip_options kwarg to the install, update and uninstall functions

	support for Python 3.8

	can now create a new package that is not part of a namespace

	authorise as an alias for authorize for the CLI

	the --create, --requires and --ini arguments to condatests.py

	Changed

	make the order of the log messages consistent: pypi -> github -> local

	use a personal access token instead of a password for authentication to the GitHub API
(authenticating to the GitHub API using a password is
deprecated [https://developer.github.com/v3/auth/#via-username-and-password])

	omit the examples directory from the coverage report and from pytest

	Fixed

	call getpass.getuser() if git is installed but the user.name parameter has not been defined

	do not split the text in the Description field to the next line in the middle of a word
for the info() function

	can now run condatests.py from any conda environment not just the base environment

	check if an MSL package was installed via pip in editable mode

	issue #6 [https://github.com/MSLNZ/msl-package-manager/issues/6] - add support for specifying
a version number when installing/updating

	issue #5 [https://github.com/MSLNZ/msl-package-manager/issues/5] - add support for
specifying an extras_require value when installing/updating

	issue #4 [https://github.com/MSLNZ/msl-package-manager/issues/4] - error updating a package if the
installed name != repository name

	the tests_require list in setup.py now specifies zipp<2.0, pyparsing<3.0 and
pytest<5.0 for Python 2.7

	Removed

	support for Python 3.4

Version 2.3.0 (2019-06-10)

	Added

	ability to install, update, create and uninstall MSL packages that do not start with msl-

	the shorter -D flag for --disable-mslpm-version-check

	use of a shell-style wildcard when specifying the package name(s)

	authorize as an API function

	Changed

	renamed the optional --path argument to --dir in the create command

	renamed the path kwarg to directory in the create method

	renamed the -uc flag to -u for the --update-cache flag

	Fixed

	running the list command did not align the Description text if the text continued on the next line

	removed the --quiet flag in the pip search msl- query

	removed the --process-dependency-links flag when installing packages
(for compatibility with pip v19.0)

Version 2.2.0 (2019-01-06)

	Added

	the --doctest-glob='*.rst' and doctest_optionflags = NORMALIZE_WHITESPACE options to the
setup.cfg file that is generated when a new package is created

	a --disable-mslpm-version-check flag

	a -uc alias for --upgrade-cache

	Changed

	renamed test_envs.py to condatests.py and made it compatible with an optional condatests.ini file

	disable pip from checking for version updates by using the --disable-pip-version-check flag

	rename the --detailed flag to be --json

	moved the GitHub authorization file to the .msl directory and renamed the file to be .mslpm-github-auth

	Fixed

	improved error handling if there is no internet connection

	use threading.Thread instead of multiprocessing.pool.ThreadPool when fetching info from GitHub
since using ThreadPool would cause some Python versions to hang (see https://bugs.python.org/issue34172)

	colorama was not resetting properly

Version 2.1.0 (2018-08-24)

	Added

	autodoc_default_options to conf.py for Sphinx 1.8 support

	nitpicky to conf.py

	the version_info named tuple now includes a releaselevel

	can now update the MSL Package Manager using msl update package-manager

	support for Python 3.7

	Removed

	support for Python 3.3

Version 2.0.0 (2018-07-02)

	Added

	ability to make authorized requests to the GitHub API (created authorize command)

	create a 3x additive --quiet flag (for silencing WARNING, ERROR and CRITICAL logging levels)

	show a message if the current version of the MSL Package Manager is not the latest release

	.pytest_cache/ and junk/ directories are now in .gitignore

	Changed

	use pkg_resources.working_set instead of pip.get_installed_distributions to get the information
about the MSL packages that are installed

	use logging instead of print statements

	the function signature for install, uninstall, update and create

	replace --update-github-cache and --update-pypi-cache flags with a single --update-cache flag

	rename function print_packages() to info()

	rename module helper.py to utils.py

	show the detailed info about the GitHub repos in JSON format

	many changes to the documentation

	Fixed

	ApiDocs in setup.py failed to run with Sphinx >1.7.0

	bug if the GitHub repo does not contain text in the Description field

	searching PyPI packages showed results that contained the letters msl but did not start with msl-

	Removed

	the constants IS_PYTHON2, IS_PYTHON3 and PKG_NAME

Version 1.5.1 (2018-02-23)

	Fixed

	the setup.py file is now compatible with Sphinx 1.7.0

Version 1.5.0 (2018-02-15)

	Added

	the default install/update URI is PyPI (and uses the GitHub URI if the package does not exist on PyPI)

	--update-pypi-cache and --pypi flags for the CLI

	Changed

	default “yes/no” choice for the CLI was changed to be “yes”

	test_envs.py has been updated to properly color the output text from pytest (v3.3.1) using colorama

Version 1.4.1 (2017-10-19)

	Added

	pip as a dependency

	Changed

	modified the template that is used for creating a new package:

	the setup.py file is now self-contained, i.e., it no longer depends on other files to be available

	removed requirements.txt and requirements-dev.txt so that one must specify the dependencies in install_requires

	added the ApiDocs and BuildDocs classes from docs/docs_commands.py and removed docs/docs_commands.py

	print the help message if no command-line argument was passed in

	updated the documentation and the docstrings

Version 1.4.0 (2017-09-19)

	Added

	add a --branch and --tag argument for the install and update commands

	add a --path and --yes argument for the create command

	added more functions to the helper module for the API:

	check_msl_prefix

	create_install_list

	create_uninstall_list

	get_zip_name

	print_error

	print_info

	print_warning

	print_install_uninstall_message

	sort_packages

	Changed

	the print_list function was renamed to print_packages

	updated the documentation and the docstrings

Version 1.3.0 (2017-08-31)

	Added

	use a thread pool to request the version number of a release for MSL repositories on GitHub

	cache the package information about the GitHub repositories

	add an --update-github-cache flag for the CLI

	update documentation and docstrings

	Fixed

	the msl namespace got destroyed after uninstalling a package in Python 2.7

	running python setup.py test now sets install_requires = []

	the test_envs.py file would hang if it had to “install eggs”

	Removed

	the --release-info flag for the CLI is no longer supported

Version 1.2.0 (2017-08-10)

	add the --all flag for the CLI

	include --process-dependency-links argument for pip install

	create upgrade alias for update

	bug fixes and edits for the print messages

Version 1.1.0 (2017-05-09)

	update email address to “measurement”

	previous release date (in CHANGES.rst) was yyyy.dd.mm should have been yyyy.mm.dd

	previous release should have incremented the minor number (new update feature)

Version 1.0.3 (2017-05-09)

	add update command

	run pip commands using sys.executable

Version 1.0.2 (2017-03-27)

	split requirements.txt using \n instead of by any white space

	remove unnecessary “import time”

Version 1.0.1 (2017-03-03)

	show help message if no package name was specified for “create” command

	remove unused ‘timeout’ argument from test_envs.py

	reorganize if-statement in “list” command to display “Invalid request” when appropriate

Version 1.0.0 (2017-03-02)

	separate install, uninstall, create and list functions into different modules

	fix MSL namespace

	edit test_envs.py to work with colorama and update stdout in real time

	add --yes and --release-info flags for CLI

	create documentation and unit tests

	many bug fixes

Version 0.1.0 (2017-02-19)

	initial release

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 msl	

 	
 	
 msl.package_manager	

 	
 	
 msl.package_manager.authorise	

 	
 	
 msl.package_manager.cli	

 	
 	
 msl.package_manager.cli_argparse	

 	
 	
 msl.package_manager.cli_authorise	

 	
 	
 msl.package_manager.cli_create	

 	
 	
 msl.package_manager.cli_install	

 	
 	
 msl.package_manager.cli_list	

 	
 	
 msl.package_manager.cli_uninstall	

 	
 	
 msl.package_manager.cli_update	

 	
 	
 msl.package_manager.create	

 	
 	
 msl.package_manager.install	

 	
 	
 msl.package_manager.uninstall	

 	
 	
 msl.package_manager.update	

 	
 	
 msl.package_manager.utils	

Index

 A
 | C
 | E
 | G
 | I
 | M
 | O
 | P
 | S
 | U
 | V

A

 	
 	add_argument_all() (in module msl.package_manager.cli_argparse)

 	add_argument_branch() (in module msl.package_manager.cli_argparse)

 	add_argument_commit() (in module msl.package_manager.cli_argparse)

 	add_argument_disable_mslpm_version_check() (in module msl.package_manager.cli_argparse)

 	add_argument_package_names() (in module msl.package_manager.cli_argparse)

 	add_argument_quiet() (in module msl.package_manager.cli_argparse)

 	add_argument_tag() (in module msl.package_manager.cli_argparse)

 	add_argument_update_cache() (in module msl.package_manager.cli_argparse)

 	
 	add_argument_yes() (in module msl.package_manager.cli_argparse)

 	add_parser_authorise() (in module msl.package_manager.cli_authorise)

 	add_parser_create() (in module msl.package_manager.cli_create)

 	add_parser_install() (in module msl.package_manager.cli_install)

 	add_parser_list() (in module msl.package_manager.cli_list)

 	add_parser_uninstall() (in module msl.package_manager.cli_uninstall)

 	add_parser_update() (in module msl.package_manager.cli_update)

 	ArgumentParser (class in msl.package_manager.cli_argparse)

 	authorise() (in module msl.package_manager.authorise)

C

 	
 	configure_parser() (in module msl.package_manager.cli)

 	
 	contains_package_names() (msl.package_manager.cli_argparse.ArgumentParser method)

 	create() (in module msl.package_manager.create)

E

 	
 	execute() (in module msl.package_manager.cli_authorise)

 	(in module msl.package_manager.cli_create)

 	(in module msl.package_manager.cli_install)

 	(in module msl.package_manager.cli_list)

 	(in module msl.package_manager.cli_uninstall)

 	(in module msl.package_manager.cli_update)

G

 	
 	get_command_name() (msl.package_manager.cli_argparse.ArgumentParser method)

 	get_email() (in module msl.package_manager.utils)

 	
 	get_username() (in module msl.package_manager.utils)

 	github() (in module msl.package_manager.utils)

I

 	
 	info() (in module msl.package_manager.utils)

 	
 	install() (in module msl.package_manager.install)

 	installed() (in module msl.package_manager.utils)

M

 	
 	main() (in module msl.package_manager.cli)

 	
 module

 	msl.package_manager

 	msl.package_manager.authorise

 	msl.package_manager.cli

 	msl.package_manager.cli_argparse

 	msl.package_manager.cli_authorise

 	msl.package_manager.cli_create

 	msl.package_manager.cli_install

 	msl.package_manager.cli_list

 	msl.package_manager.cli_uninstall

 	msl.package_manager.cli_update

 	msl.package_manager.create

 	msl.package_manager.install

 	msl.package_manager.uninstall

 	msl.package_manager.update

 	msl.package_manager.utils

 	
 msl.package_manager

 	module

 	
 msl.package_manager.authorise

 	module

 	
 msl.package_manager.cli

 	module

 	
 	
 msl.package_manager.cli_argparse

 	module

 	
 msl.package_manager.cli_authorise

 	module

 	
 msl.package_manager.cli_create

 	module

 	
 msl.package_manager.cli_install

 	module

 	
 msl.package_manager.cli_list

 	module

 	
 msl.package_manager.cli_uninstall

 	module

 	
 msl.package_manager.cli_update

 	module

 	
 msl.package_manager.create

 	module

 	
 msl.package_manager.install

 	module

 	
 msl.package_manager.uninstall

 	module

 	
 msl.package_manager.update

 	module

 	
 msl.package_manager.utils

 	module

O

 	
 	outdated_pypi_packages() (in module msl.package_manager.utils)

P

 	
 	parse_args() (in module msl.package_manager.cli)

 	pypi() (in module msl.package_manager.utils)

 	
 	
 Python Enhancement Proposals

 	PEP 8

S

 	
 	set_log_level() (in module msl.package_manager.utils)

U

 	
 	uninstall() (in module msl.package_manager.uninstall)

 	
 	update() (in module msl.package_manager.update)

V

 	
 	version_info (in module msl.package_manager)

 _static/plus.png

_static/pycharm_github_checkout.png
PyCharm

Version 2019.1.1

+ Create New Project
= Open

H Check out from Version Control ~

 Configure ~

Get Help ~

_static/file.png

_static/minus.png

_static/pycharm_github_commit2.png
Commit Char

+ 0

~ C\Users\j.borbely\code\msl-loadlib.
1 README rst
B master 1 modified

Commit Message

update MSL Package Manager url for readthedocs

~ oift

z Side-by-side viewer -

& c0c0274d0280ba19c7 2673937 ca0sT137ca5b0d5
v

lonnet..github. 10/

Do not ignor

{/wiki/Inter-process_commumication
7en.vikipedia.org/wiki/Java_virtual_machine
‘ms1-package-manager. readthedocs. io/en/latest/
1d.org/contypes/#

</ /en.wikipedia..org/wiki/Component_Object Model

is.microsoft. con/en-us/of fice/vba/language/ referenc,

Changelist: Default Changelist ait

Author:

[Amend commit
] Sign-off commit

Before Commit

[Reformat code.
[Rearrange code

0] Qptimize imports

[Perform code analysis

Check TODO (Show Al Configure
O Geanup

[Update copyright

re - 2 1 difference

o & &

Your version

Highlight words -

¥
net.github. 1o/

iXi/Inter-process_commmication
a.wikipedia.org/wiki/Java_virtual machine
L-package-nanager . readthedocs.. io/en/stable/
srg/contypes/#
/en.wikipedia.org/wiki/Component_Object Model
nicrosoft.com/en-us/of fice/vba/language/ reference/u

_static/pycharm_github_commit3.png
C\Users\j.borbely\ code\mslI{
i README rst

update MSL Package Manager url for readithedocs

_static/pycharm_github_clone.png
3 Clone Reposi

VRL [ntpsy/github.comyMSLNZ/ms-loadiigit
Directory: [C\Usersborbey\code\msr-foadiie]

Clone

Test

Gancel

_static/pycharm_github_commit1.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help
‘msh-loadiib | 51 README.st Add Configuration. Gt ¥ O oQ
g| FPoy € T | & — | CHANGESst README rst Commit (Ct1+K) |
£~ 5 mskloadiib ¢ Ui bor
2 > e
msl Documentation
tests - -
coveragerc
giignore 12 The documentation for *¥USL-LoadLibt* can be found “here <https://msl-Loadlib. readthedocs. 1o/
AAUTHORS.rst o
- Idocs| image:: hutps://readthedocs. org/projects/msl-loadlib/badge/ version=latesc
I CHANGES.1st target: https://msl-loadlib.readthedocs.io/en/latest/
@ condatests.py. alt: Documentation Status
UCENSE iscale: 1008
i README st
setup.cfg Ipypi| image:: https://badge.fury.io/py/msl-loadlib.svg
target: ht . fury . io/py/msl-loadlib
B setup.py e tps://badge. fury . io/py.
wheelbat .
_ctypes: https://docs.python.ora/3/1ibrary /ctypes.htal
wheel linwcsh Python for .IET: https://pythomet.github. 10/
> 11l External Libraries TPy43: nttps://wnr.pye].org/
7 Scrtches and Consoles Tipc: https://en.vikipedia.org/viki/Tnter-process_commmication
dava Virtual Machine: https://en.vikipedia.org/viki/Java_virtual_machine
e 5L Package Manager: https: //msl-package-nanager. readthedocs. io/en/stable/
H comtypes: https: //pythonhosted.ora/contypes/
H component Gbject Model: ttps://en.wikipedia.org/wiki/Conponent Object Model
= FileSystenbiect: https://docs microsoft.con/en-us/of fice/vba/language/reference/user-in
*
E6TOD0 | g VersionControl B Terminal & Python Consale Qeentiog
[0 Alliles are up-to-date (5 minutes ago) 16045 Git master ©

_static/pycharm_github_login1.png
Clone Rey

e [l

Directory: | C\Users\jborbely\PycharmProjects

Login to GitHul

Test

Cancel

_static/pycharm_github_login2.png
Sever | github.com

e —

Password:

Password is not saved and used only to
acquire GitHub token. Enter token

Sign up for GitHub 7 [_LogIn Gancel

_static/pycharm_installation1.png
&

Create Desktop shorteut

Update context menu

Create Assodiations.

[]Add "Open Folder as Project™

Installation Options
Configure your PyCharm Commurity Editon nstallation

Update PATH variable (restart needed)
] Add launchers di to the PATH

_static/pycharm_installation2.png
Config o nstallation folder:

© B et mpert setings

nav.xhtml

 Table of Contents

 		
 MSL Package Manager

 		
 Install

 		
 Dependencies

 		
 CLI Usage

 		
 install

 		
 uninstall

 		
 update

 		
 list

 		
 create

 		
 authorise

 		
 API Usage

 		
 install

 		
 uninstall

 		
 update

 		
 list

 		
 create

 		
 authorise

 		
 API Documentation

 		
 Package Structure

 		
 msl.package_manager

 		
 msl.package_manager.authorise

 		
 msl.package_manager.cli

 		
 msl.package_manager.cli_argparse

 		
 msl.package_manager.cli_authorise

 		
 msl.package_manager.cli_create

 		
 msl.package_manager.cli_install

 		
 msl.package_manager.cli_list

 		
 msl.package_manager.cli_uninstall

 		
 msl.package_manager.cli_update

 		
 msl.package_manager.create

 		
 msl.package_manager.install

 		
 msl.package_manager.uninstall

 		
 msl.package_manager.update

 		
 msl.package_manager.utils

 		
 ”create” ReadMe

 		
 setup.py

 		
 condatests.py

 		
 command line

 		
 configuration file

 		
 MSL Developers Guide

 		
 Install and set up Python, Git and PyCharm

 		
 Commit changes to a repository

 		
 Use the setup.py and condatests.py scripts

 		
 Edit source code using the style guide

 		
 License

 		
 Authors

 		
 Release Notes

 		
 Version 2.5.4 (2023-06-16)

 		
 Version 2.5.2 (2021-11-08)

 		
 Version 2.5.1 (2021-08-24)

 		
 Version 2.5.0 (2021-05-17)

 		
 Version 2.4.1 (2021-02-20)

 		
 Version 2.4.0 (2020-04-20)

 		
 Version 2.3.0 (2019-06-10)

 		
 Version 2.2.0 (2019-01-06)

 		
 Version 2.1.0 (2018-08-24)

 		
 Version 2.0.0 (2018-07-02)

 		
 Version 1.5.1 (2018-02-23)

 		
 Version 1.5.0 (2018-02-15)

 		
 Version 1.4.1 (2017-10-19)

 		
 Version 1.4.0 (2017-09-19)

 		
 Version 1.3.0 (2017-08-31)

 		
 Version 1.2.0 (2017-08-10)

 		
 Version 1.1.0 (2017-05-09)

 		
 Version 1.0.3 (2017-05-09)

 		
 Version 1.0.2 (2017-03-27)

 		
 Version 1.0.1 (2017-03-03)

 		
 Version 1.0.0 (2017-03-02)

 		
 Version 0.1.0 (2017-02-19)

_static/pycharm_github_pull_1.png
msl-loadlib [CAU: = =]

Elle Edtt View Navigate Code Refoctor Run Tools VCS Window Help
ms-loadiib ‘Add Configuration. Gt K v
& — Update Project (Ctr+T)

¥ L:Project

2 coveragerc
gitignore
i AUTHORS 15t
i CHANGES st
 condatests.py
2 LICENSE £t
i README st
2 setup.cig
% setup.py
2 wheelbat
& wheel linuxsh
> i External Libraries
o Scratches and Consoles

Search Everywhere Double Shift

Go to File Ctrl+Shift+N
Recent Files Ctrl+E
Navigation Bar Alt+Home

Drop files here to open

I:Strucure

* 2:Favorites

ZETODO | 9 Version Control B8 Terminal @ Python Console. Qevert Log

=) Git: master

_static/pycharm_github_pull_2.png
B vpue - S

Updste Type Clean working tee before update
O Merge ® Using Stash
O Rebase O Using Shejve:

® Branch Defautt

@ Do notshow this dislog

hetute

_static/pycharm_interpreter2.png
Project: msk-loadiib > Project Interpreter For current project Reset

iy Project Interpreter: |) Python 3.7 - | B2
Keymap. Show AL
Editor Package Version Latest verson ¥
. asntaypo 0240 0240
Version Contral bleach 310 310
- ca-ceriicates 9123 9123
certifi 01939 01939 (o]
4 o 1123 1123 °
Project Structure chardet 304 304
B s vl ‘conda 4614 4614
Languages & Frameworks conda-eny 260 260
Tools console_shortcut 011 011
ayptography 261 261
docutis 014 014
idna 28 28
meninst 1436 1436
openss 1116 1116
vip 1903 1903
phginto 1501 1501
pycosat 063 063
pycparser 219 219

[==

_static/pycharm_interpreter3.png
APyt e

2, Virtusen Environment O New environment
Conda Environment Loction: C\Users\borbely\miniconds3\envs\msl-loaclib

@ SystemInterpreter Python version:

¥ Pipeny Environment Conda executsble: | G\Users\ borbely\miniconda3\Scripts cond.exe

Make svaisble to sl projects
® Existing environment

Interpreter: |) C\Users\jborbely\miniconda3\envs\py37\python.exe

[Miske svilsbe o al projects

_static/pycharm_installation3.png
| Customize PyChary

UI Themes — Feature:

Set UI theme

* Darcula

project £ fib.py

£ ib.py
aes zin()

v ¥ @ Python Line Breakpoint
 fib.py:s

¥ ¥ € Python Bxception Breakpo
¥ Any exception

¥ 1 € Djengo xception Breakpoi

Light

project

fib.py

(1000)

Next: Featured plugins

_static/pycharm_interpreter1.png
Project Interpreter

Project Structure
Build,Execution, Deployment
Languages & Frameworks
Tools

Project: msk-loadiib > Project Interpreter

Project Inerpreter: | O Python37

Package
asnlerypto

bleach
carcertificates
certif

o

chardet

conda
conda-env
console_shortcut
cryptography
docutils

idna

meninst
openss!

pip

plginfo

pycosat
pycparser

For current project

_images/anaconda_prompt.png
Programs (2)
8 Anaconds Powershell Prompt
8 Ansconds Prompt

Fies 1)

O Miniconda3-latest-Windows-86_64

D See moreresults

anaconda| x | Shutdown | » |

_images/anaconda_setup.png
Advanced Installation Options
ANACONDA Customize how Anaconda integrates with Windows

Advanced Options.

[] Add Anaconda to my PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select “Anaconda (64-bit)". Thi “add to PATH" option makes
‘Anaconda get found before previously nstaled software, but may
cause problems requiing you to uninstall and reinstall Anaconda.

Register Anaconda as my default Python 3.7

This il low other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automaticaly
detect Anaconda s the primary Python 3.7 on the system.

Anaconda, Inc

_static/pycharm_numpy_style.png
Languages & Frameworks

Web Browsers
Ecternal Tools

Terminal

Dif & Merge

Python Extemsl Documentation
Python Integrated Tools

Server Certficates

Settings Repository
Startup Tasks

Tasks

Tools » Python Integrated Tools Forcurrentproject Reset
Packaging

Package requirements file:

Path to Pipenv executable:

Testing

Default test runner: | pytest

Docstrings

Docstring format: | NumPy.

nalyze Python code in docstrings
[Render exteral documentation for stdlib
reStructuredText

‘Sphinx working directory:
[Treat "t files as reStructuredText

_images/pycharm_github_checkout.png
PyCharm

Version 2019.1.1

+ Create New Project
= Open

H Check out from Version Control ~

 Configure ~

Get Help ~

_static/pycharm_github_open.png
B Checkout From

Would you like to open the directory C\Users\j.borbely\code\msl-loadib?

_images/pycharm_github_clone.png
3 Clone Reposi

VRL [ntpsy/github.comyMSLNZ/ms-loadiigit
Directory: [C\Usersborbey\code\msr-foadiie]

Clone

Test

Gancel

_images/pycharm_github_commit1.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help
‘msh-loadiib | 51 README.st Add Configuration. Gt ¥ O oQ
g| FPoy € T | & — | CHANGESst README rst Commit (Ct1+K) |
£~ 5 mskloadiib ¢ Ui bor
2 > e
msl Documentation
tests - -
coveragerc
giignore 12 The documentation for *¥USL-LoadLibt* can be found “here <https://msl-Loadlib. readthedocs. 1o/
AAUTHORS.rst o
- Idocs| image:: hutps://readthedocs. org/projects/msl-loadlib/badge/ version=latesc
I CHANGES.1st target: https://msl-loadlib.readthedocs.io/en/latest/
@ condatests.py. alt: Documentation Status
UCENSE iscale: 1008
i README st
setup.cfg Ipypi| image:: https://badge.fury.io/py/msl-loadlib.svg
target: ht . fury . io/py/msl-loadlib
B setup.py e tps://badge. fury . io/py.
wheelbat .
_ctypes: https://docs.python.ora/3/1ibrary /ctypes.htal
wheel linwcsh Python for .IET: https://pythomet.github. 10/
> 11l External Libraries TPy43: nttps://wnr.pye].org/
7 Scrtches and Consoles Tipc: https://en.vikipedia.org/viki/Tnter-process_commmication
dava Virtual Machine: https://en.vikipedia.org/viki/Java_virtual_machine
e 5L Package Manager: https: //msl-package-nanager. readthedocs. io/en/stable/
H comtypes: https: //pythonhosted.ora/contypes/
H component Gbject Model: ttps://en.wikipedia.org/wiki/Conponent Object Model
= FileSystenbiect: https://docs microsoft.con/en-us/of fice/vba/language/reference/user-in
*
E6TOD0 | g VersionControl B Terminal & Python Consale Qeentiog
[0 Alliles are up-to-date (5 minutes ago) 16045 Git master ©

_images/pycharm_github_login1.png
Clone Rey

e [l

Directory: | C\Users\jborbely\PycharmProjects

Login to GitHul

Test

Cancel

_images/pycharm_github_login2.png
Sever | github.com

e —

Password:

Password is not saved and used only to
acquire GitHub token. Enter token

Sign up for GitHub 7 [_LogIn Gancel

_images/pycharm_github_commit2.png
Commit Char

+ 0

~ C\Users\j.borbely\code\msl-loadlib.
1 README rst
B master 1 modified

Commit Message

update MSL Package Manager url for readthedocs

~ oift

z Side-by-side viewer -

& c0c0274d0280ba19c7 2673937 ca0sT137ca5b0d5
v

lonnet..github. 10/

Do not ignor

{/wiki/Inter-process_commumication
7en.vikipedia.org/wiki/Java_virtual_machine
‘ms1-package-manager. readthedocs. io/en/latest/
1d.org/contypes/#

</ /en.wikipedia..org/wiki/Component_Object Model

is.microsoft. con/en-us/of fice/vba/language/ referenc,

Changelist: Default Changelist ait

Author:

[Amend commit
] Sign-off commit

Before Commit

[Reformat code.
[Rearrange code

0] Qptimize imports

[Perform code analysis

Check TODO (Show Al Configure
O Geanup

[Update copyright

re - 2 1 difference

o & &

Your version

Highlight words -

¥
net.github. 1o/

iXi/Inter-process_commmication
a.wikipedia.org/wiki/Java_virtual machine
L-package-nanager . readthedocs.. io/en/stable/
srg/contypes/#
/en.wikipedia.org/wiki/Component_Object Model
nicrosoft.com/en-us/of fice/vba/language/ reference/u

_images/pycharm_github_commit3.png
C\Users\j.borbely\ code\mslI{
i README rst

update MSL Package Manager url for readithedocs

_images/pycharm_github_pull_2.png
B vpue - S

Updste Type Clean working tee before update
O Merge ® Using Stash
O Rebase O Using Shejve:

® Branch Defautt

@ Do notshow this dislog

hetute

_images/pycharm_installation1.png
&

Create Desktop shorteut

Update context menu

Create Assodiations.

[]Add "Open Folder as Project™

Installation Options
Configure your PyCharm Commurity Editon nstallation

Update PATH variable (restart needed)
] Add launchers di to the PATH

_images/pycharm_github_open.png
B Checkout From

Would you like to open the directory C\Users\j.borbely\code\msl-loadib?

_images/pycharm_github_pull_1.png
msl-loadlib [CAU: = =]

Elle Edtt View Navigate Code Refoctor Run Tools VCS Window Help
ms-loadiib ‘Add Configuration. Gt K v
& — Update Project (Ctr+T)

¥ L:Project

2 coveragerc
gitignore
i AUTHORS 15t
i CHANGES st
 condatests.py
2 LICENSE £t
i README st
2 setup.cig
% setup.py
2 wheelbat
& wheel linuxsh
> i External Libraries
o Scratches and Consoles

Search Everywhere Double Shift

Go to File Ctrl+Shift+N
Recent Files Ctrl+E
Navigation Bar Alt+Home

Drop files here to open

I:Strucure

* 2:Favorites

ZETODO | 9 Version Control B8 Terminal @ Python Console. Qevert Log

=) Git: master

_images/pycharm_installation3.png
| Customize PyChary

UI Themes — Feature:

Set UI theme

* Darcula

project £ fib.py

£ ib.py
aes zin()

v ¥ @ Python Line Breakpoint
 fib.py:s

¥ ¥ € Python Bxception Breakpo
¥ Any exception

¥ 1 € Djengo xception Breakpoi

Light

project

fib.py

(1000)

Next: Featured plugins

_images/pycharm_interpreter1.png
Project Interpreter

Project Structure
Build,Execution, Deployment
Languages & Frameworks
Tools

Project: msk-loadiib > Project Interpreter

Project Inerpreter: | O Python37

Package
asnlerypto

bleach
carcertificates
certif

o

chardet

conda
conda-env
console_shortcut
cryptography
docutils

idna

meninst
openss!

pip

plginfo

pycosat
pycparser

For current project

_images/pycharm_installation2.png
Config o nstallation folder:

© B et mpert setings

_images/pycharm_numpy_style.png
Languages & Frameworks

Web Browsers
Ecternal Tools

Terminal

Dif & Merge

Python Extemsl Documentation
Python Integrated Tools

Server Certficates

Settings Repository
Startup Tasks

Tasks

Tools » Python Integrated Tools Forcurrentproject Reset
Packaging

Package requirements file:

Path to Pipenv executable:

Testing

Default test runner: | pytest

Docstrings

Docstring format: | NumPy.

nalyze Python code in docstrings
[Render exteral documentation for stdlib
reStructuredText

‘Sphinx working directory:
[Treat "t files as reStructuredText

_static/anaconda_prompt.png
Programs (2)
8 Anaconds Powershell Prompt
8 Ansconds Prompt

Fies 1)

O Miniconda3-latest-Windows-86_64

D See moreresults

anaconda| x | Shutdown | » |

_images/pycharm_interpreter2.png
Project: msk-loadiib > Project Interpreter For current project Reset

iy Project Interpreter: |) Python 3.7 - | B2
Keymap. Show AL
Editor Package Version Latest verson ¥
. asntaypo 0240 0240
Version Contral bleach 310 310
- ca-ceriicates 9123 9123
certifi 01939 01939 (o]
4 o 1123 1123 °
Project Structure chardet 304 304
B s vl ‘conda 4614 4614
Languages & Frameworks conda-eny 260 260
Tools console_shortcut 011 011
ayptography 261 261
docutis 014 014
idna 28 28
meninst 1436 1436
openss 1116 1116
vip 1903 1903
phginto 1501 1501
pycosat 063 063
pycparser 219 219

[==

_images/pycharm_interpreter3.png
APyt e

2, Virtusen Environment O New environment
Conda Environment Loction: C\Users\borbely\miniconds3\envs\msl-loaclib

@ SystemInterpreter Python version:

¥ Pipeny Environment Conda executsble: | G\Users\ borbely\miniconda3\Scripts cond.exe

Make svaisble to sl projects
® Existing environment

Interpreter: |) C\Users\jborbely\miniconda3\envs\py37\python.exe

[Miske svilsbe o al projects

_static/anaconda_setup.png
Advanced Installation Options
ANACONDA Customize how Anaconda integrates with Windows

Advanced Options.

[] Add Anaconda to my PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select “Anaconda (64-bit)". Thi “add to PATH" option makes
‘Anaconda get found before previously nstaled software, but may
cause problems requiing you to uninstall and reinstall Anaconda.

Register Anaconda as my default Python 3.7

This il low other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automaticaly
detect Anaconda s the primary Python 3.7 on the system.

Anaconda, Inc

