
MSL-Package-Manager
Documentation

Release 2.5.4

Measurement Standards Laboratory of New Zealand

Jun 16, 2023

CONTENTS

1 Contents 3

Python Module Index 45

Index 47

i

ii

MSL-Package-Manager Documentation, Release 2.5.4

The MSL Package Manager allows one to install, uninstall, update, list and create packages that are
used at the Measurement Standards Laboratory of New Zealand.

All MSL packages that start with msl- are part of the msl namespace. This allows one to split sub-
packages and modules across multiple, separate distribution packages while still maintaining a single,
unifying package structure.

All MSL packages are available as GitHub repositories and some have been published as PyPI packages.

CONTENTS 1

https://measurement.govt.nz/
https://packaging.python.org/guides/packaging-namespace-packages/
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22

MSL-Package-Manager Documentation, Release 2.5.4

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Install the MSL Package Manager

To install the MSL Package Manager run:

pip install msl-package-manager

1.1.1 Dependencies

• Python 2.7, 3.5+

• setuptools

• colorama

1.2 Command Line Interface

Once the MSL Package Manager has been installed you will be able to install, uninstall, update, list and
create MSL packages by using the command line interface.

You can also directly call these functions through the API .

Attention: Since MSL packages are part of a namespace, uninstalling MSL packages using pip
uninstall msl-<packaage name> will break the namespace. Therefore, it is recommended to
use msl uninstall <packaage name> to uninstall MSL packages.

Note: The information about the MSL repositories that are available on GitHub and the MSL packages
on PyPI are cached for 24 hours after you request information about a repository or package. After 24
hours a subsequent request will automatically update the GitHub or PyPI cache. To force the cache to be
updated immediately include the --update-cache flag.

To read the help documentation from the command line, run

msl --help

or, for help about a specific command (for example, the install command), run

3

https://pypi.org/project/setuptools/
https://pypi.org/project/colorama/
https://packaging.python.org/guides/packaging-namespace-packages/
https://packaging.python.org/guides/packaging-namespace-packages/
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22

MSL-Package-Manager Documentation, Release 2.5.4

msl install --help

1.2.1 install

Install all MSL packages that are available

msl install --all

Install all MSL packages without asking for confirmation

msl install --all --yes

Install a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

msl install loadlib

Install a package from a git branch (by default the main branch is used if the package is not available on
PyPI)

msl install loadlib --branch develop

Install a package from a git tag

msl install loadlib --tag v0.3.0

Install a package from the hash value of a commit

msl install loadlib --commit 12591bade80321c3a165f7a7364ef13f568d622b

Install multiple MSL packages

msl install loadlib equipment qt

Install a specific version of a package (the package must be available as a PyPI package)

msl install loadlib==0.6.0

Specify a version range of a package – make sure to surround the package and version range in quotes
(the package must be available as a PyPI package)

msl install "loadlib>=0.4,<0.6"

Install a package and its extra dependencies

msl install loadlib[com]

You can also use a wildcard, for example, to install all packages that start with pr-

msl install pr-*

You can also include all options that the pip install command accepts, run pip help install for
more details

4 Chapter 1. Contents

https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies

MSL-Package-Manager Documentation, Release 2.5.4

msl install loadlib equipment qt --user --retries 10

1.2.2 uninstall

Uninstall all MSL packages (except for the msl-package-manager)

msl uninstall --all

Tip: You can also use remove as an alias for uninstall, e.g., msl remove --all

Note: To uninstall the MSL Package Manager run pip uninstall msl-package-manager. Use
with caution. If you uninstall the MSL Package Manager and you still have other MSL packages installed
then you may break the MSL namespace.

Uninstall all MSL packages without asking for confirmation

msl uninstall --all --yes

Uninstall a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

msl uninstall loadlib

Uninstall multiple MSL packages

msl uninstall loadlib equipment qt

You can also include all options that the pip uninstall command accepts, run pip help uninstall
for more details

msl uninstall io qt --no-python-version-warning

1.2.3 update

Update all MSL packages that are installed

msl update --all

Tip: You can also use upgrade as an alias for update, e.g., msl upgrade --all

Update all MSL packages without asking for confirmation

msl update --all --yes

Update a specific MSL package, for example msl-loadlib (you can ignore the msl- prefix)

1.2. Command Line Interface 5

https://packaging.python.org/guides/packaging-namespace-packages/

MSL-Package-Manager Documentation, Release 2.5.4

msl update loadlib

Update to a package that was released <24 hours ago

msl update loadlib --update-cache

Update a package to a git branch (by default the main branch is used if the package is not available on
PyPI)

msl update loadlib --branch develop

Update a package to a git tag

msl update loadlib --tag v0.3.0

Update a package using the hash value of a commit

msl update loadlib --commit 12591bade80321c3a165f7a7364ef13f568d622b

Update multiple MSL packages

msl update loadlib equipment qt

You can also include all options that the pip install command accepts, run pip help install for
more details (the --upgrade option is automatically included by default)

msl update loadlib io --no-deps

1.2.4 list

List all MSL packages that are installed

msl list

List all MSL repositories that are available on GitHub

msl list --github

List all MSL packages that are available on PyPI

msl list --pypi

Update the GitHub cache and then list all repositories that are available

msl list --github --update-cache

Update the PyPI cache and then list all packages that are available

msl list --pypi --update-cache

Show the information about the repositories (includes information about the branches and the tags) in
JSON format

6 Chapter 1. Contents

https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://www.json.org/

MSL-Package-Manager Documentation, Release 2.5.4

msl list --github --json

1.2.5 create

To create a new package called MyPackage, run

msl create MyPackage

This will create a new folder (in the current working directory) called msl-MyPackage.

To import the package you would use

>>> from msl import MyPackage

Running the create command attempts to determine your user name and email address from your git
account to use as the author and email values in the files that it creates. You do not need git to be
installed to use the create command, but it helps to make the process more automated. Optionally, you
can specify the name to use for the author and the email address by passing additional arguments

msl create MyPackage --author Firstname Lastname --email my.email@address.com

You can also specify where to create the package (instead of the default location which is in the current
working directory) by specifying a value for the --dir argument and to automatically accept the default
author name and email address values by adding the --yes argument

msl create MyPackage --yes --dir D:\create\package\here

To create a new package that is part of a different namespace, you can run

msl create monochromator --namespace pr

To import this package you would use

>>> from pr import monochromator

To create a new package that is not part of a namespace, run

msl create mypackage --no-namespace

To import this package you would use

>>> import mypackage

1.2. Command Line Interface 7

https://git-scm.com
https://git-scm.com
https://packaging.python.org/guides/packaging-namespace-packages/
https://packaging.python.org/guides/packaging-namespace-packages/

MSL-Package-Manager Documentation, Release 2.5.4

1.2.6 authorise

When requesting information about the MSL repositories that are available on GitHub there is a limit to
how often you can send requests to the GitHub API (this is the primary reason for caching the informa-
tion). If you have a GitHub account and include your username and a personal access token with each
request then this limit is increased. If you do not have a GitHub account then you could sign up to create
an account.

By running this command you will be asked for your GitHub username and personal access token so that
you send authorised requests to the GitHub API.

msl authorise

Tip: You can also use authorize as an alias for authorise, e.g., msl authorize

Important: Your GitHub username and personal access token are saved in plain text in the file that
is created. You should set the file permissions provided by your operating system to ensure that your
GitHub credentials are safe.

1.3 API Usage

In cases where using the command-line interface is not desired, you can use the API functions directly
to install, uninstall, update, list and create MSL packages.

First, import the MSL Package Manager

>>> from msl import package_manager as pm

Tip: You can set what information is displayed on the screen by changing the Logging Levels

>>> import logging
>>> pm.set_log_level(logging.INFO)

1.3.1 install

install the msl-network and msl-qt packages

>>> pm.install('network', 'qt')
The following MSL packages will be INSTALLED:

msl-network 0.5.0 [PyPI]
msl-qt [GitHub]

Proceed (Y/n)?

8 Chapter 1. Contents

https://github.com/MSLNZ
https://developer.github.com/v3/#rate-limiting
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
https://developer.github.com/v3/#rate-limiting
https://github.com/join?source=header-home
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
https://docs.python.org/3/library/logging.html#levels

MSL-Package-Manager Documentation, Release 2.5.4

1.3.2 uninstall

uninstall the msl-loadlib package

>>> pm.uninstall('loadlib')
The following MSL packages will be REMOVED:

msl-loadlib 0.6.0

Proceed (Y/n)?

1.3.3 update

update the msl-loadlib package

>>> pm.update('loadlib')
The following MSL packages will be UPDATED:

msl-loadlib 0.6.0 --> 0.7.0 [PyPI]

Proceed (Y/n)?

1.3.4 list

Display the information about the MSL packages that are installed, see info()

>>> pm.info()
MSL Package Version Description

------------------- ------- --
→˓--------------------

msl-loadlib 0.6.0 Load a shared library (and access a 32-bit␣
→˓library from 64-bit Python)
msl-package-manager 2.4.0 Install, uninstall, update, list and create MSL␣
→˓packages

Display the information about the MSL repositories that are available

>>> pm.info(from_github=True)
MSL Repository Version Description

------------------- ------- --
→˓--------------------

GTC 1.2.1 The GUM Tree Calculator for Python
Quantity-Value 0.1.0 A package that supports physical quantity-

→˓correctness in Python code
msl-equipment Manage and communicate with equipment in the␣

→˓laboratory
msl-io Read and write data files

msl-loadlib 0.7.0 Load a shared library (and access a 32-bit␣
→˓library from 64-bit Python)

(continues on next page)

1.3. API Usage 9

https://github.com/MSLNZ

MSL-Package-Manager Documentation, Release 2.5.4

(continued from previous page)

msl-network 0.5.0 Concurrent and asynchronous network I/O
msl-package-manager 2.4.0 Install, uninstall, update, list and create MSL␣
→˓packages

msl-qt Custom Qt components for the user interface

Get a dictionary of all MSL packages that are installed()

>>> pkgs = pm.installed()
>>> for pkg, info in pkgs.items():
... print(pkg, info)
...
msl-loadlib {'version': '0.6.0', 'description': 'Load a shared library (and␣
→˓access a 32-bit library from 64-bit Python)', 'repo_name': 'msl-loadlib'}
msl-package-manager {'version': '2.4.0', 'description': 'Install, uninstall,␣
→˓update, list and create MSL packages', 'repo_name': 'msl-package-manager'}

Get a dictionary of all MSL repositories on GitHub, see github()

>>> pkgs = pm.github()
>>> for key, value in pkgs['msl-package-manager'].items():
... print('{}: {}'.format(key, value))
...
description: Install, uninstall, update, list and create MSL packages
version: 2.4.0
tags: ['v2.4.0', 'v2.3.0', 'v2.2.0', 'v2.1.0', 'v2.0.0', 'v1.5.1', 'v1.5.0',
→˓'v1.4.1', 'v1.4.0', 'v1.3.0', 'v1.2.0', 'v1.1.0', 'v1.0.3', 'v1.0.2', 'v1.0.
→˓1', 'v1.0.0', 'v0.1.0']
branches: ['main']

Get a dictionary of all MSL packages on PyPI, see pypi()

>>> pkgs = pm.pypi()
>>> pkgs['msl-package-manager']
{'description': 'Install, uninstall, update, list and create MSL packages',
→˓'version': '2.4.0'}

10 Chapter 1. Contents

https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22

MSL-Package-Manager Documentation, Release 2.5.4

1.3.5 create

create a new MSL-MyPackage package

>>> pm.create('MyPackage', author='my name', email='my@email.com', directory=
→˓'D:/create/here')
Created msl-MyPackage in 'D:/create/here\\msl-MyPackage'

1.3.6 authorise

Create an authorisation file for the GitHub API, see authorise()

>>> pm.authorise()
Enter your GitHub username [default: ...]: >?
Enter your GitHub personal access token: >?

1.4 MSL Package Manager API Documentation

The root package is

msl.package_manager Install, uninstall, update, list and create MSL
packages.

which has the following functions

authorise([username, token]) Create an authorisation file for the GitHub API.
create(*names, **kwargs) Create a new package.
github([update_cache]) Get the information about the MSL repositories

that are available on GitHub.
info([from_github, from_pypi, update_cache,
...])

Show information about MSL packages.

install(*names, **kwargs) Install MSL packages.
installed() Get the information about the MSL packages that

are installed.
set_log_level(level) Set the logging level.
pypi([update_cache]) Get the information about the MSL packages that

are available on PyPI.
uninstall(*names, **kwargs) Uninstall MSL packages.
update(*names, **kwargs) Update MSL packages.

1.4. MSL Package Manager API Documentation 11

https://github.com/MSLNZ
https://docs.python.org/3/library/logging.html#levels
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22

MSL-Package-Manager Documentation, Release 2.5.4

1.4.1 Package Structure

msl.package_manager package

Install, uninstall, update, list and create MSL packages.

The following constants are available.

msl.package_manager.version_info = version_info(major=2, minor=5, micro=4,
releaselevel='final')

Contains the version information as a (major, minor, micro, releaselevel) tuple.

Type
namedtuple

msl.package_manager.authorise module

Create an authorisation file for the GitHub API.

msl.package_manager.authorise.authorise(username=None, token=None)
Create an authorisation file for the GitHub API.

When requesting information about the MSL repositories that are available on GitHub there is a
limit to how often you can send requests to the GitHub API. If you have a GitHub account and
include your username and a personal access token with each request then this limit is increased.

Important: Calling this function will create a file that contains your GitHub username and a
personal access token so that GitHub requests are authorised. Your username and personal access
token are saved in plain text in the file that is created. You should set the file permissions provided
by your operating system to ensure that your GitHub credentials are safe.

New in version 2.3.0.

Changed in version 2.4.0: Renamed the password keyword argument to token.

Changed in version 2.5.0: Renamed function to authorise.

Parameters

• username (str, optional) – The GitHub username. If None then you will be
asked for the username.

• token (str, optional) – A GitHub personal access token for username. If
None then you will be asked for the token.

12 Chapter 1. Contents

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://github.com/MSLNZ
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://docs.python.org/3/library/constants.html#None

MSL-Package-Manager Documentation, Release 2.5.4

msl.package_manager.cli module

Main entry point to either install, uninstall, update, list or create MSL packages using the command-line
interface (CLI).

msl.package_manager.cli.configure_parser()

ArgumentParser: Returns the argument parser.

msl.package_manager.cli.parse_args(args)
Parse arguments.

Parameters
args (list of str) – The arguments to parse.

Returns
An argparse.Namespace or None if there was an error.

msl.package_manager.cli.main(*args)
Main entry point to either install, uninstall, update, list or create MSL packages using the CLI.

msl.package_manager.cli_argparse module

Custom argument parsers.

class msl.package_manager.cli_argparse.ArgumentParser(*args, **kwargs)
Bases: ArgumentParser

A custom argument parser.

get_command_name()

str: Returns the name of the command, e.g., install, list, . . .

contains_package_names(quiet=False)
Check whether package names were specified or the --all flag was used.

Changed in version 2.5.0: Added the quiet keyword argument.

Parameters
quiet (bool) – Whether to suppress the error message from being shown.

Returns
bool – Whether package names were specified or the --all flag was used.

msl.package_manager.cli_argparse.add_argument_all(parser)
Add an --all argument to the parser.

msl.package_manager.cli_argparse.add_argument_branch(parser)
Add a --branch argument to the parser.

msl.package_manager.cli_argparse.add_argument_package_names(parser)
Add a --names argument to the parser.

msl.package_manager.cli_argparse.add_argument_quiet(parser)
Add a --quiet argument to the parser.

1.4. MSL Package Manager API Documentation 13

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

MSL-Package-Manager Documentation, Release 2.5.4

msl.package_manager.cli_argparse.add_argument_tag(parser)
Add a --tag argument to the parser.

msl.package_manager.cli_argparse.add_argument_update_cache(parser)
Add an --update-cache argument to the parser.

msl.package_manager.cli_argparse.add_argument_yes(parser)
Add a --yes argument to the parser.

msl.package_manager.cli_argparse.add_argument_disable_mslpm_version_check(parser)
Add a --disable-mslpm-version-check argument to the parser.

msl.package_manager.cli_argparse.add_argument_commit(parser)
Add a --commit argument to the parser.

msl.package_manager.cli_authorise module

Command line interface for the authorise command.

msl.package_manager.cli_authorise.add_parser_authorise(parser, name='authorise')
Add the authorise command to the parser.

msl.package_manager.cli_authorise.execute(args, parser)
Executes the authorise command.

msl.package_manager.cli_create module

Command line interface for the create command.

msl.package_manager.cli_create.add_parser_create(parser)
Add the create command to the parser.

msl.package_manager.cli_create.execute(args, parser)
Executes the create command.

msl.package_manager.cli_install module

Command line interface for the install command.

msl.package_manager.cli_install.add_parser_install(parser)
Add the install command to the parser.

msl.package_manager.cli_install.execute(args, parser)
Executes the install command.

14 Chapter 1. Contents

MSL-Package-Manager Documentation, Release 2.5.4

msl.package_manager.cli_list module

Command line interface for the list command.

msl.package_manager.cli_list.add_parser_list(parser)
Add the list command to the parser.

msl.package_manager.cli_list.execute(args, parser)
Executes the list command.

msl.package_manager.cli_uninstall module

Command line interface for the uninstall command.

msl.package_manager.cli_uninstall.add_parser_uninstall(parser, name='uninstall')
Add the uninstall command to the parser.

msl.package_manager.cli_uninstall.execute(args, parser)
Executes the uninstall command.

msl.package_manager.cli_update module

Command line interface for the update command.

msl.package_manager.cli_update.add_parser_update(parser, name='update')
Add the update command to the parser.

msl.package_manager.cli_update.execute(args, parser)
Executes the update command.

msl.package_manager.create module

Create a new package.

msl.package_manager.create.create(*names, **kwargs)
Create a new package.

Parameters

• *names – The name(s) of the package(s) to create.

• **kwargs –

– author – str
The name of the author to use for the new package. If None then uses
utils.get_username() to determine the author’s name. Default is
None.

– directory – str
The directory to create the new package(s) in. If None then creates the
new package(s) in the current working directory. Default is None.

– email – str
The author’s email address. If None then uses utils.get_email() to
determine the author’s email address. Default is None.

1.4. MSL Package Manager API Documentation 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

MSL-Package-Manager Documentation, Release 2.5.4

– namespace – str
The namespace that the package belongs to. If namespace is None or an
empty string then create a new package that is not part of a namespace.
Default is the 'msl' namespace.

– yes – bool
If True then don’t ask for verification for the author name and for the
email address. This argument is only used if you do not specify the author
or the email value. The verification step allows you to change the value
that was automatically determined before the package is created. The
default is to ask for verification before creating the package if the author
or the email value was not specified. Default is False.

msl.package_manager.install module

Install MSL packages.

msl.package_manager.install.install(*names, **kwargs)
Install MSL packages.

MSL packages can be installed from PyPI packages (only if a release has been uploaded to PyPI)
or from GitHub repositories.

Note: If the MSL packages are available on PyPI then PyPI is used as the default location to install
the package. If you want to force the installation to occur from the main branch from GitHub (even
though the package is available on PyPI) then set branch='main'. If the package is not available
on PyPI then the main branch is used as the default installation location.

Changed in version 2.4.0: Added the pip_options keyword argument.

Changed in version 2.5.0: Added the commit keyword argument. The default name of a repository
branch changed to main.

Parameters

• *names – The name(s) of the MSL package(s) to install. If not specified then
install all MSL packages that begin with the msl- prefix. The msl- prefix can
be omitted (e.g., 'loadlib' is equivalent to 'msl-loadlib'). Also accepts
shell-style wildcards (e.g., 'pr-*').

• **kwargs –

– branch – str
The name of a git branch to install. If not specified and neither a tag nor
commit was specified then the main branch is used to install a package if
it is not available on PyPI.

– commit – str
The hash value of a git commit to use to install a package.

– tag – str
The name of a git tag to use to install a package.

– update_cache – bool
The information about the MSL packages that are available on PyPI and

16 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22

MSL-Package-Manager Documentation, Release 2.5.4

about the repositories that are available on GitHub are cached to use for
subsequent calls to this function. After 24 hours the cache is automat-
ically updated. Set update_cache to be True to force the cache to be
updated when you call this function. Default is False.

– yes – bool
If True then don’t ask for confirmation before installing. The default is
False (ask before installing).

– pip_options – list of str
Optional arguments to pass to the pip install command, e.g.,
['--retries', '10', '--user']

msl.package_manager.uninstall module

Uninstall MSL packages.

msl.package_manager.uninstall.uninstall(*names, **kwargs)
Uninstall MSL packages.

Changed in version 2.4.0: Added the pip_options keyword argument.

Parameters

• *names – The name(s) of the MSL package(s) to uninstall. If not specified then
uninstall all MSL packages (except for the MSL Package Manager – in which
case use pip uninstall msl-package-manager). The msl- prefix can be
omitted (e.g., 'loadlib' is equivalent to 'msl-loadlib'). Also accepts
shell-style wildcards (e.g., 'pr-*').

• **kwargs –

– yes – bool
If True then don’t ask for confirmation before uninstalling. The default
is False (ask before uninstalling).

– pip_options – list of str
Optional arguments to pass to the pip uninstall command, e.g.,
['--no-python-version-warning']

msl.package_manager.update module

Update MSL packages.

msl.package_manager.update.update(*names, **kwargs)
Update MSL packages.

MSL packages can be updated from PyPI packages (only if a release has been uploaded to PyPI)
or from GitHub repositories.

Note: If the MSL packages are available on PyPI then PyPI is used as the default URI to update the
package. If you want to force the update to occur from the main branch of the GitHub repository
then set branch='main'. If the package is not available on PyPI then the main branch is used as
the default update URI.

1.4. MSL Package Manager API Documentation 17

https://github.com/MSLNZ
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://github.com/MSLNZ
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

MSL-Package-Manager Documentation, Release 2.5.4

Changed in version 2.4.0: Added the pip_options keyword argument.

Changed in version 2.5.0: Added the include_non_msl and commit keyword arguments. The de-
fault name of a repository branch changed to main.

Parameters

• *names – The name(s) of the MSL package(s) to update. If not specified then
update all MSL packages. The msl- prefix can be omitted (e.g., 'loadlib'
is equivalent to 'msl-loadlib'). Also accepts shell-style wildcards (e.g.,
'pr-*').

• **kwargs –

– branch – str
The name of a git branch to use to update the package(s) to.

– commit – str
The hash value of a git commit to use to update a package.

– tag – str
The name of a git tag to use to update a package.

– update_cache – bool
The information about the MSL packages that are available on PyPI and
about the repositories that are available on GitHub are cached to use for
subsequent calls to this function. After 24 hours the cache is automat-
ically updated. Set update_cache to be True to force the cache to be
updated when you call this function. Default is False.

– yes – bool
If True then don’t ask for confirmation before updating. The default is
False (ask before updating).

– pip_options – list of str
Optional arguments to pass to the pip install --upgrade command,
e.g., ['--upgrade-strategy', 'eager']

– include_non_msl – bool
If True then also update all non-MSL packages. The default is False
(only update the specified MSL packages). Warning, enable this option
with caution.

Important: If you specify a branch, commit or tag then the update will be
forced.

18 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

MSL-Package-Manager Documentation, Release 2.5.4

msl.package_manager.utils module

Functions for the API.

msl.package_manager.utils.get_email()

Try to determine the user’s email address.

If git is installed then it returns the user.email parameter from the user’s git account to use as
the user’s email address. If git is not installed then returns None.

Returns
str or None – The user’s email address.

msl.package_manager.utils.get_username()

Determine the name of the user.

If git is installed then it returns the user.name parameter from the user’s git account. If git is
not installed or if the user.name parameter does not exist then getpass.getuser() is used to
determine the username.

Returns
str – The user’s name.

msl.package_manager.utils.github(update_cache=False)
Get the information about the MSL repositories that are available on GitHub.

Parameters
update_cache (bool, optional) – The information about the repositories that are
available on GitHub are cached to use for subsequent calls to this function. After
24 hours the cache is automatically updated. Set update_cache to be True to force
the cache to be updated when you call this function.

Returns
dict – The information about the MSL repositories that are available on GitHub.

msl.package_manager.utils.info(from_github=False, from_pypi=False, update_cache=False,
as_json=False)

Show information about MSL packages.

The information about the packages can be either those that are installed or those that are available
as repositories on GitHub or as packages on PyPI.

The default action is to show the information about the MSL packages that are installed.

Parameters

• from_github (bool, optional) – Whether to show the information about the
MSL repositories that are available on GitHub.

• from_pypi (bool, optional) – Whether to show the information about the
MSL packages that are available on PyPI.

• update_cache (bool, optional) – The information about the MSL packages
that are available on PyPI and about the repositories that are available on
GitHub are cached to use for subsequent calls to this function. After 24 hours
the cache is automatically updated. Set update_cache to be True to force the
cache to be updated when you call this function. If from_github is True then

1.4. MSL Package Manager API Documentation 19

https://git-scm.com
https://git-scm.com
https://git-scm.com
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://docs.python.org/3/library/getpass.html#getpass.getuser
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/MSLNZ
https://docs.python.org/3/library/functions.html#bool
https://github.com/MSLNZ
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/MSLNZ
https://github.com/MSLNZ
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/functions.html#bool
https://github.com/MSLNZ
https://docs.python.org/3/library/functions.html#bool
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/functions.html#bool
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://github.com/MSLNZ
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

MSL-Package-Manager Documentation, Release 2.5.4

the cache for the repositories is updated. If from_pypi is True then the cache
for the packages is updated.

• as_json (bool, optional) – Whether to show the information in JSON format.
If enabled then the information about the MSL repositories includes additional
information about the branches and tags.

msl.package_manager.utils.installed()

Get the information about the MSL packages that are installed.

Returns
dict – The information about the MSL packages that are installed.

msl.package_manager.utils.outdated_pypi_packages(msl_installed=None)
Check PyPI for all non-MSL packages that are outdated.

New in version 2.5.0.

Parameters
msl_installed (dict, optional) – The MSL packages that are installed. If not
specified then calls installed() to determine the installed packages.

Returns
dict – The information about the PyPI packages that are outdated.

msl.package_manager.utils.pypi(update_cache=False)
Get the information about the MSL packages that are available on PyPI.

Parameters
update_cache (bool, optional) – The information about the MSL packages that
are available on PyPI are cached to use for subsequent calls to this function. After
24 hours the cache is automatically updated. Set update_cache to be True to force
the cache to be updated when you call this function.

Returns
dict – The information about the MSL packages that are available on PyPI.

msl.package_manager.utils.set_log_level(level)
Set the logging level.

Parameters
level (int) – A value from one of the Logging Levels.

1.5 “create” ReadMe

The MSL package that is created by running the msl create command contains two scripts to help make
development easier: setup.py and condatests.py.

20 Chapter 1. Contents

https://github.com/MSLNZ
https://docs.python.org/3/library/constants.html#True
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/functions.html#bool
https://www.json.org/
https://github.com/MSLNZ
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/functions.html#bool
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict
https://pypi.org/search/?q=%22Measurement+Standards+Laboratory+of+New+Zealand%22
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#levels

MSL-Package-Manager Documentation, Release 2.5.4

1.5.1 setup.py

The setup.py file (that is created by running msl create) includes additional commands that can be used
to run unit tests and to create the documentation for your MSL package.

Note: The Python packages that are required to execute the following commands (e.g., pytest and sphinx)
are automatically installed (into the .eggs directory) if they are not already installed in your environment.
Therefore, the first time that you run the following commands it will take longer to finish executing the
command because these packages (and their own dependencies) need to be downloaded then installed. If
you prefer to install these packages directly into your environment you can run conda install pytest
pytest-cov pytest-runner sphinx sphinx_rtd_theme, or if you are using pip as your package
manager then replace conda with pip.

The following command will run all test modules that pytest finds as well as testing all the example code
that is located within the docstrings of the source code and in the .rst files in the docs/ directory. To
modify the options that pytest will use to run the tests you can edit the [tool:pytest] section in setup.cfg.
A coverage report is created in the htmlcov/index.html file. This report provides an overview of which
parts of the code have been executed during the tests.

python setup.py tests

Warning: pytest can only load one configuration file and uses the following search order to find that
file:

1. pytest.ini - used even if it does not contain a [pytest] section

2. tox.ini - must contain a [pytest] section to be used

3. setup.cfg - must contain a [tool:pytest] section to be used

See the configuration file section for an example if you want to run pytest with custom options without
modifying any of these configuration files.

Create the documentation files, uses sphinx-build. The documentation can be viewed by opening
docs/_build/html/index.html

python setup.py docs

Automatically create the API documentation from the docstrings in the source code, uses sphinx-apidoc.
The files are saved to docs/_autosummary

python setup.py apidocs

Attention: By default, the docs/_autosummary directory that is created by running this com-
mand is automatically generated (overwrites existing files). As such, it is excluded from the repos-
itory (i.e., this directory is specified in the .gitignore file). If you want to keep the files located
in docs/_autosummary you should rename the directory to, for example, docs/_api and then the
changes made to the files in the docs/_api directory will be kept and can be included in the reposi-
tory.

1.5. “create” ReadMe 21

https://doc.pytest.org/en/latest/
https://www.sphinx-doc.org/en/master/
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://pip.pypa.io/en/stable/
https://doc.pytest.org/en/latest/
https://doc.pytest.org/en/latest/
https://coverage.readthedocs.io/en/latest/index.html
https://doc.pytest.org/en/latest/
https://doc.pytest.org/en/latest/
https://www.sphinx-doc.org/en/master/man/sphinx-build.html
https://www.sphinx-doc.org/en/master/man/sphinx-apidoc.html

MSL-Package-Manager Documentation, Release 2.5.4

You can view additional help for setup.py by running

python setup.py --help

or

python setup.py --help-commands

1.5.2 condatests.py

Important: The following assumes that you are using conda as your environment manager.

Additionally, there is a condatests.py file that is created by running msl create. This script will run
the tests in all specified conda environments. At the time of writing this script, tox and conda were not
compatible and so this script provided a way around this issue.

You can either pass options from the command line or by creating a configuration file.

command line

condatests.py accepts the following command-line arguments:

• --create - the Python version numbers to use to create conda environments (e.g., 2 3.6 3.7.2)

• --include - the conda environments to include (supports regex)

• --exclude - the conda environments to exclude (supports regex)

• --requires - additional packages to install for the tests (can also be a path to a file)

• --command - the command to execute with each conda environment

• --ini - the path to a configuration file

• --list - list the conda environments that will be used for the tests and then exit

You can view the help for condatests.py by running

python condatests.py --help

Run the tests with all conda environment's using the python -m pytest command. This assumes that
a configuration file does not exist (which could change the default options).

python condatests.py

Run the tests with all conda environments that include py in the environment name

python condatests.py --include py

Run the tests with all conda environments but exclude those that contain py26 and py33 in the environment
name

python condatests.py --exclude py26 py33

22 Chapter 1. Contents

https://docs.conda.io/en/latest/
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://tox.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/
https://github.com/tox-dev/tox/issues/273
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://docs.conda.io/projects/conda/en/latest/commands/install.html#Named%20Arguments
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

MSL-Package-Manager Documentation, Release 2.5.4

Tip: Since a regex search is used to filter the environment names that follow the --exclude (and
also the --include) option, the above command could be replaced with --exclude "py(26|33)".
Surrounding the regex pattern with a " is necessary so that the OR, |, regex symbol is not mistaken for
a pipe symbol.

Run the tests with all conda environments that include dev in the environment name but exclude those
with dev33 in the environment name

python condatests.py --include dev --exclude dev33

Create new conda environments for the specified Python versions (if the minor or micro version numbers
are not specified then the latest Python version that is available to conda will be installed). After the
test finishes the newly-created environment is removed. For example, the following command will create
environments for the latest Python 2.x.x version, for the latest Python 3.6.x version and for Python 3.7.4
and exclude all environments that already exist

python condatests.py --create 2 3.6 3.7.4 --exclude .

You can also mix the --create, --include and --exclude arguments

python condatests.py --create 3.7 --include dev --exclude dev33

Run the tests with all conda environments using the command nosetests

python condatests.py --command nosetests

Run the tests with all conda environments using the command unittest discover -s tests/

python condatests.py --command "unittest discover -s tests/"

Run the tests with all conda environments using the command unittest discover -s tests/ and
ensure that all the packages specified in a requirements file are installed in each environment

python condatests.py --command "unittest discover -s tests/" --requires my_
→˓requirements.txt

List all conda environments that will be used for the tests and then exit

python condatests.py --list

You can also use –show as an alias for –list

python condatests.py --show

List the conda environments that include dev in the environment name and then exit

python condatests.py --include dev --list

Specify the path to a condatests.ini file

python condatests.py --ini C:\Users\Me\my_condatests_config.ini

1.5. “create” ReadMe 23

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://docs.conda.io/projects/conda/en/latest/commands/install.html#Named%20Arguments
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

MSL-Package-Manager Documentation, Release 2.5.4

configuration file

In addition to passing command line options, you can also save the options in an condatests.ini con-
figuration file. This is a standard ini-style configuration file with the options create, include, exclude,
command and requires specified under the [envs] section.

If a condatests.ini configuration file exists in the current working directory then it will automatically be
loaded by running

python condatests.py

Alternatively, you can also specify the path to the configuration file from the command line

python condatests.py --ini C:\Users\Me\my_condatests_config.ini

You can pass in command-line arguments as well as reading from the configuration file. The following
will load the condatests.ini file in the current working directory, print the conda environments that will
be used for the tests and then exit

python condatests.py --show

Since every developer can name their environments to be anything that they want, the condatests.ini file
is included in .gitignore.

The following are example condatests.ini files.

Example 1: Run python -m pytest (see setup.py) with all conda environments except for the base
environment

[envs]
exclude=base

Example 2: Run python -m pytest with all conda environments that include the text py in the name
of the environment but exclude the environments that contain py33 in the name (recall that a regex search
is used to filter the environment names)

[envs]
include=py
exclude=py33

Example 3: Run python -m pytest only with newly-created conda environments, exclude all envi-
ronments that already exist and ensure that scipy is installed in each new environment (if the minor or
micro version numbers of the Python environments are not specified then the latest Python version that
is available to conda will be installed)

[envs]
create=2 3.5 3.6 3.7
exclude=.
requires=scipy

Example 4: Run python -m pytest with newly-created conda environments and all conda environ-
ments that already exist that contain the text dev in the name of the environment except for the dev33
environment

24 Chapter 1. Contents

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

MSL-Package-Manager Documentation, Release 2.5.4

[envs]
create=3.6 3.7.3 3.7.4
include=dev
exclude=dev33

Example 5: Run unittest, for all modules in the tests directory, with all conda environments that
include the text dev in the environment name

[envs]
include=dev
command=unittest discover -s tests/

Example 6: Run pytest with customized options (i.e., ignoring any pytest.ini, tox.ini or setup.cfg files
that might exist) with the specified conda environments.

[envs]
create=3.7
include=dev27 myenvironment py36
command=pytest -c condatests.ini

[pytest]
addopts =

-x
--verbose

Note: The environment names specified in the create, include, exclude and requires option can be
separated by a comma, by whitespace or both. So, include=py27,py36,py37, include=py27 py36
py37 and include=py27, py36, py37 are all equivalent.

1.6 MSL Developers Guide

This guide1 shows you how to:

• Install and set up Python, Git and PyCharm

• Commit changes to a repository

• Use the setup.py and condatests.py scripts

• Edit source code using the style guide

and describes one way to set up an environment to develop Python programs. The guide does not intend
to imply that the following is the best way to develop programs in the Python language.

1 Software is identified in this guide in order to specify the installation and configuration procedure adequately. Such iden-
tification is not intended to imply recommendation or endorsement by the Measurement Standards Laboratory of New Zealand,
nor is it intended to imply that the software identified are necessarily the best available for the purpose.

1.6. MSL Developers Guide 25

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://doc.pytest.org/en/latest/
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html

MSL-Package-Manager Documentation, Release 2.5.4

1.6.1 Install and set up Python, Git and PyCharm

This section uses the MSL-LoadLib repository as an example of a repository that one would like to clone
and import into PyCharm.

The following instructions are written for a Windows x64 operating system. To install the same software
on a Debian architecture, such as Ubuntu, run

sudo apt update
sudo apt install git snapd
sudo snap install pycharm-community --classic
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda*

and answer the questions that you are asked. After running these commands you can follow the appro-
priate steps below.

Attention: The screenshots below might not represent exactly what you see during the installation
or configuration procedure as this depends on the version of the software that you are using.

1. Download a 64-bit version of Miniconda.

2. Install Miniconda. It is recommended to Register Anaconda but not to Add it to your PATH.

3. Open the Anaconda Command Prompt

26 Chapter 1. Contents

https://github.com/MSLNZ/msl-loadlib
https://git-scm.com/docs/git-clone
https://www.jetbrains.com/pycharm/download/#section=windows
https://www.ubuntu.com/
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

MSL-Package-Manager Documentation, Release 2.5.4

and then enter the following command to update all Miniconda packages:

conda update --all

4. It is usually best to create a new virtual environment for each Python project that you are working
on to avoid possible conflicts between the packages that are required for each Python project or to
test the code against different versions of Python (i.e., it solves the Project X depends on version
1.x but Project Y depends on version 4.x dilemma).

In the Anaconda Command Prompt create a new py37 virtual environment (you can pick another
name, py37 is just an example of a name) and install the Python 3.7 interpreter in this environment
(NOTE: You can also create conda environment’s from within PyCharm if you are not comfortable
with the command line, see Step 9)

conda create --name py37 python=3.7

You may also want to create another virtual environment so that you can run the code against
another Python version. For example, here is an example of how to create a Python 2.7 virtual
environment named py27:

conda create --name py27 python=2.7

5. Create a GitHub account (if you do not already have one).

6. Download and install git (accept the default settings). This program is used as the version control
system.

1.6. MSL Developers Guide 27

https://docs.conda.io/en/latest/miniconda.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/join?source=header-home
https://git-scm.com/downloads
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control

MSL-Package-Manager Documentation, Release 2.5.4

7. Download and install the Community Edition of PyCharm to use as an IDE. This IDE is free to
use and it provides a lot of the features that one expects from an IDE. When asked to Create
associations check the .py checkbox and you can also create a shortcut on the desktop (you can
accept the default settings for everything else that you are asked during the installation)

8. Run PyCharm and perform the following:

a) Import settings from a previous version of PyCharm (if available)

b) Select the default editor theme (you can also change the theme later) and click Skip Remain-
ing and Set Defaults

28 Chapter 1. Contents

https://www.jetbrains.com/pycharm/download/#section=windows
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

MSL-Package-Manager Documentation, Release 2.5.4

c) Select the Git option from Check out from Version Control

d) Click the Log in to Github. . . button

1.6. MSL Developers Guide 29

MSL-Package-Manager Documentation, Release 2.5.4

and then enter your GitHub account information (see Step 5 above) and click Log In

e) Clone the MSL-LoadLib repository. Specify the Directory where you want to clone the
repository (NOTE: the MSL-LoadLib repository will only appear if you are part of the
MSLNZ organisation on GitHub. A list of your own repositories will be available.)

f) Open the MSL-LoadLib repository in PyCharm

9. Add the py37 virtual environment that was created in Step 4 as the Project Interpreter (NOTE:
you can also create a new conda environment in Step 9d)

a) Press CTRL+ALT+S to open the Settings window

b) Go to Project Interpreter and click on the gear button in the top-right corner

30 Chapter 1. Contents

https://github.com/join?source=header-home
https://git-scm.com/docs/git-clone
https://github.com/MSLNZ/msl-loadlib
https://github.com/MSLNZ/msl-loadlib
https://github.com/MSLNZ
https://github.com/MSLNZ/msl-loadlib
https://conda.io/docs/user-guide/tasks/manage-environments.html

MSL-Package-Manager Documentation, Release 2.5.4

c) Select Add

d) Select Conda Environment → Existing environment and select the py37 virtual environ-
ment that was created in Step 4 and then click OK You can also create a new environment if
you want

1.6. MSL Developers Guide 31

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html

MSL-Package-Manager Documentation, Release 2.5.4

e) Click Apply then OK

f) If you created a py27 virtual environment then repeat Steps 9b-9d to add the Python 2.7
environment

10. The MSL-LoadLib project is now shown in the Project window and you can begin to modify the
code.

1.6.2 Commit changes to a repository

The following is only a very basic example of how to upload changes to the source code to the MSL-
LoadLib repository by using PyCharm. See this link for a much more detailed overview on how to use
git.

Note: This section assumes that you followed the instructions from Install and set up Python, Git and
PyCharm.

1. Make sure that the git Branch you are working on is up to date by performing a Pull.

a) Click on the blue, downward-arrow button in the top-right corner to update the project

32 Chapter 1. Contents

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/MSLNZ/msl-loadlib
https://github.com/MSLNZ/msl-loadlib
https://git-scm.com/doc
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/docs/git-pull

MSL-Package-Manager Documentation, Release 2.5.4

b) Select the options for how you want to update the project (the default options are usually
okay) and click OK

2. Make changes to the code.

3. When you are happy with the changes that you have made you should Push the changes to the
MSL-LoadLib repository.

a) Click on the green, check-mark button in the top-right corner to commit the changes

1.6. MSL Developers Guide 33

https://git-scm.com/docs/git-push
https://github.com/MSLNZ/msl-loadlib

MSL-Package-Manager Documentation, Release 2.5.4

b) Select the file(s) that you want to upload to the MSL-LoadLib repository, add a useful mes-
sage for the commit and then select Commit and Push.

34 Chapter 1. Contents

https://github.com/MSLNZ/msl-loadlib

MSL-Package-Manager Documentation, Release 2.5.4

c) Finally, Push the changes to the MSL-LoadLib repository.

1.6.3 Use the setup.py and condatests.py scripts

MSL packages come with two scripts to help make development easier: setup.py and condatests.py. See
the “create” ReadMe page for an overview on how to use these scripts.

1.6.4 Edit source code using the style guide

Please adhere to the following style guides when contributing to MSL packages. With multiple people
contributing to the code base it will be easier to understand if there is a coherent structure to how the
code is written:

Note: This section assumes that you followed the instructions from Install and set up Python, Git and
PyCharm.

• Follow the PEP 8 style guide when possible (by default, PyCharm will notify you if you do not).

• Docstrings must be provided for all public classes, methods and functions.

• For the docstrings use the NumPy Style format.

– Press CTRL+ALT+S to open the Settings window and navigate to Tools→ Python Integrated
Tools to select the NumPy docstring format and then click Apply then OK.

1.6. MSL Developers Guide 35

https://git-scm.com/docs/git-push
https://github.com/MSLNZ/msl-loadlib
https://peps.python.org/pep-0008/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

MSL-Package-Manager Documentation, Release 2.5.4

• Do not use print() statements to notify the end-user of the status of a program. Use logging
instead. This has the advantage that you can use different logging levels to decide what message
types are displayed and which are filtered and you can also easily redirect all messages, for example,
to a GUI widget or to a file. The django project has a nice overview on how to use Python’s builtin
logging module.

1.7 License

MIT License

Copyright (c) 2017 - 2023, Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

(continues on next page)

36 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging-levels
https://docs.djangoproject.com/en/3.0/topics/logging/

MSL-Package-Manager Documentation, Release 2.5.4

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.8 Developers

• Joseph Borbely <joseph.borbely@measurement.govt.nz>

1.9 Release Notes

1.9.1 Version 2.5.4 (2023-06-16)

This release will be the last to support Python 2.7, 3.5, 3.6 and 3.7

• Added

– support for Python 3.11

• Fixed

– do not update MSL packages that are installed in editable mode

– issue #11 - TypeError: Object of type Requirement is not JSON serializable

– issue #10 - GitHub rate-limit error message repeats

– issue #9 - PyPI regex pattern is invalid for the /search endpoint

1.9.2 Version 2.5.2 (2021-11-08)

• Added

– support for Python 3.10

• Fixed

– increased the GitHub API pagination to 100 repositories per page

– issue #8 - Invalid URL fragment with pip dependency resolver

1.8. Developers 37

mailto:joseph.borbely@measurement.govt.nz
https://github.com/MSLNZ/msl-package-manager/issues/11
https://github.com/MSLNZ/msl-package-manager/issues/10
https://github.com/MSLNZ/msl-package-manager/issues/9
https://github.com/MSLNZ/msl-package-manager/issues/8

MSL-Package-Manager Documentation, Release 2.5.4

1.9.3 Version 2.5.1 (2021-08-24)

• Fixed

– issue #7 - Updating non-MSL packages can install the wrong version

1.9.4 Version 2.5.0 (2021-05-17)

• Added

– install or update a package from the hash value of a commit

– a docs key to extras_require in setup.py

– update all outdated, non-MSL packages from PyPI

• Changed

– renamed the authorize function to authorise

– use ~/.msl/package-manager as the HOME directory to save the GitHub token and the
PyPI/GitHub caches.

– use 4x additive --quiet flag (for silencing DEBUG, INFO, WARNING and ERROR logging levels)

– direct logging messages less than WARNING to sys.stdout and greater than or equal to
WARNING to sys.stderr

– the default name of a repository branch is now main for the install and update commands

– use the conda-forge channel (instead of the anaconda channel) when installing packages in
condatests.py

1.9.5 Version 2.4.1 (2021-02-20)

• Added

– support for Python 3.9

• Changed

– only include the --force-reinstall flag when updating a package from GitHub (previ-
ously this flag was included when updating from PyPI as well)

– include the --no-deps flag if no extras require option is specified when updating a package
from GitHub

– no longer use the XMLRPC API to get the information about the MSL packages that are
available on PyPI

38 Chapter 1. Contents

https://github.com/MSLNZ/msl-package-manager/issues/7

MSL-Package-Manager Documentation, Release 2.5.4

1.9.6 Version 2.4.0 (2020-04-20)

• Added

– the pip_options kwarg to the install, update and uninstall functions

– support for Python 3.8

– can now create a new package that is not part of a namespace

– authorise as an alias for authorize for the CLI

– the --create, --requires and --ini arguments to condatests.py

• Changed

– make the order of the log messages consistent: pypi -> github -> local

– use a personal access token instead of a password for authentication to the GitHub API (au-
thenticating to the GitHub API using a password is deprecated)

– omit the examples directory from the coverage report and from pytest

• Fixed

– call getpass.getuser() if git is installed but the user.name parameter has not been defined

– do not split the text in the Description field to the next line in the middle of a word for the
info() function

– can now run condatests.py from any conda environment not just the base environment

– check if an MSL package was installed via pip in editable mode

– issue #6 - add support for specifying a version number when installing/updating

– issue #5 - add support for specifying an extras_require value when installing/updating

– issue #4 - error updating a package if the installed name != repository name

– the tests_require list in setup.py now specifies zipp<2.0, pyparsing<3.0 and pytest<5.0 for
Python 2.7

• Removed

– support for Python 3.4

1.9.7 Version 2.3.0 (2019-06-10)

• Added

– ability to install, update, create and uninstall MSL packages that do not start with msl-

– the shorter -D flag for --disable-mslpm-version-check

– use of a shell-style wildcard when specifying the package name(s)

– authorize as an API function

• Changed

– renamed the optional --path argument to --dir in the create command

– renamed the path kwarg to directory in the create method

1.9. Release Notes 39

https://developer.github.com/v3/auth/#via-username-and-password
https://github.com/MSLNZ/msl-package-manager/issues/6
https://github.com/MSLNZ/msl-package-manager/issues/5
https://github.com/MSLNZ/msl-package-manager/issues/4

MSL-Package-Manager Documentation, Release 2.5.4

– renamed the -uc flag to -u for the --update-cache flag

• Fixed

– running the list command did not align the Description text if the text continued on the
next line

– removed the --quiet flag in the pip search msl- query

– removed the --process-dependency-links flag when installing packages (for compati-
bility with pip v19.0)

1.9.8 Version 2.2.0 (2019-01-06)

• Added

– the --doctest-glob='*.rst' and doctest_optionflags =
NORMALIZE_WHITESPACE options to the setup.cfg file that is generated when a new
package is created

– a --disable-mslpm-version-check flag

– a -uc alias for --upgrade-cache

• Changed

– renamed test_envs.py to condatests.py and made it compatible with an optional con-
datests.ini file

– disable pip from checking for version updates by using the
--disable-pip-version-check flag

– rename the --detailed flag to be --json

– moved the GitHub authorization file to the .msl directory and renamed the file to be .mslpm-
github-auth

• Fixed

– improved error handling if there is no internet connection

– use threading.Thread instead of multiprocessing.pool.ThreadPool when fetching
info from GitHub since using ThreadPool would cause some Python versions to hang (see
https://bugs.python.org/issue34172)

– colorama was not resetting properly

1.9.9 Version 2.1.0 (2018-08-24)

• Added

– autodoc_default_options to conf.py for Sphinx 1.8 support

– nitpicky to conf.py

– the version_info named tuple now includes a releaselevel

– can now update the MSL Package Manager using msl update package-manager

– support for Python 3.7

40 Chapter 1. Contents

https://bugs.python.org/issue34172

MSL-Package-Manager Documentation, Release 2.5.4

• Removed

– support for Python 3.3

1.9.10 Version 2.0.0 (2018-07-02)

• Added

– ability to make authorized requests to the GitHub API (created authorize command)

– create a 3x additive --quiet flag (for silencing WARNING, ERROR and CRITICAL logging
levels)

– show a message if the current version of the MSL Package Manager is not the latest release

– .pytest_cache/ and junk/ directories are now in .gitignore

• Changed

– use pkg_resources.working_set instead of pip.get_installed_distributions to
get the information about the MSL packages that are installed

– use logging instead of print statements

– the function signature for install, uninstall, update and create

– replace --update-github-cache and --update-pypi-cache flags with a single
--update-cache flag

– rename function print_packages() to info()

– rename module helper.py to utils.py

– show the detailed info about the GitHub repos in JSON format

– many changes to the documentation

• Fixed

– ApiDocs in setup.py failed to run with Sphinx >1.7.0

– bug if the GitHub repo does not contain text in the Description field

– searching PyPI packages showed results that contained the letters msl but did not start with
msl-

• Removed

– the constants IS_PYTHON2, IS_PYTHON3 and PKG_NAME

1.9.11 Version 1.5.1 (2018-02-23)

• Fixed

– the setup.py file is now compatible with Sphinx 1.7.0

1.9. Release Notes 41

MSL-Package-Manager Documentation, Release 2.5.4

1.9.12 Version 1.5.0 (2018-02-15)

• Added

– the default install/update URI is PyPI (and uses the GitHub URI if the package does not exist
on PyPI)

– --update-pypi-cache and --pypi flags for the CLI

• Changed

– default “yes/no” choice for the CLI was changed to be “yes”

– test_envs.py has been updated to properly color the output text from pytest (v3.3.1) using
colorama

1.9.13 Version 1.4.1 (2017-10-19)

• Added

– pip as a dependency

• Changed

– modified the template that is used for creating a new package:

∗ the setup.py file is now self-contained, i.e., it no longer depends on other files to be
available

∗ removed requirements.txt and requirements-dev.txt so that one must specify the depen-
dencies in install_requires

∗ added the ApiDocs and BuildDocs classes from docs/docs_commands.py and removed
docs/docs_commands.py

– print the help message if no command-line argument was passed in

– updated the documentation and the docstrings

1.9.14 Version 1.4.0 (2017-09-19)

• Added

– add a --branch and --tag argument for the install and update commands

– add a --path and --yes argument for the create command

– added more functions to the helper module for the API:

∗ check_msl_prefix

∗ create_install_list

∗ create_uninstall_list

∗ get_zip_name

∗ print_error

∗ print_info

42 Chapter 1. Contents

MSL-Package-Manager Documentation, Release 2.5.4

∗ print_warning

∗ print_install_uninstall_message

∗ sort_packages

• Changed

– the print_list function was renamed to print_packages

– updated the documentation and the docstrings

1.9.15 Version 1.3.0 (2017-08-31)

• Added

– use a thread pool to request the version number of a release for MSL repositories on GitHub

– cache the package information about the GitHub repositories

– add an --update-github-cache flag for the CLI

– update documentation and docstrings

• Fixed

– the msl namespace got destroyed after uninstalling a package in Python 2.7

– running python setup.py test now sets install_requires = []

– the test_envs.py file would hang if it had to “install eggs”

• Removed

– the --release-info flag for the CLI is no longer supported

1.9.16 Version 1.2.0 (2017-08-10)

• add the --all flag for the CLI

• include --process-dependency-links argument for pip install

• create upgrade alias for update

• bug fixes and edits for the print messages

1.9.17 Version 1.1.0 (2017-05-09)

• update email address to “measurement”

• previous release date (in CHANGES.rst) was yyyy.dd.mm should have been yyyy.mm.dd

• previous release should have incremented the minor number (new update feature)

1.9. Release Notes 43

MSL-Package-Manager Documentation, Release 2.5.4

1.9.18 Version 1.0.3 (2017-05-09)

• add update command

• run pip commands using sys.executable

1.9.19 Version 1.0.2 (2017-03-27)

• split requirements.txt using \n instead of by any white space

• remove unnecessary “import time”

1.9.20 Version 1.0.1 (2017-03-03)

• show help message if no package name was specified for “create” command

• remove unused ‘timeout’ argument from test_envs.py

• reorganize if-statement in “list” command to display “Invalid request” when appropriate

1.9.21 Version 1.0.0 (2017-03-02)

• separate install, uninstall, create and list functions into different modules

• fix MSL namespace

• edit test_envs.py to work with colorama and update stdout in real time

• add --yes and --release-info flags for CLI

• create documentation and unit tests

• many bug fixes

1.9.22 Version 0.1.0 (2017-02-19)

• initial release

44 Chapter 1. Contents

PYTHON MODULE INDEX

m
msl.package_manager, 12
msl.package_manager.authorise, 12
msl.package_manager.cli, 13
msl.package_manager.cli_argparse, 13
msl.package_manager.cli_authorise, 14
msl.package_manager.cli_create, 14
msl.package_manager.cli_install, 14
msl.package_manager.cli_list, 15
msl.package_manager.cli_uninstall, 15
msl.package_manager.cli_update, 15
msl.package_manager.create, 15
msl.package_manager.install, 16
msl.package_manager.uninstall, 17
msl.package_manager.update, 17
msl.package_manager.utils, 19

45

MSL-Package-Manager Documentation, Release 2.5.4

46 Python Module Index

INDEX

A
add_argument_all() (in module

msl.package_manager.cli_argparse),
13

add_argument_branch() (in module
msl.package_manager.cli_argparse),
13

add_argument_commit() (in module
msl.package_manager.cli_argparse),
14

add_argument_disable_mslpm_version_check()
(in module
msl.package_manager.cli_argparse),
14

add_argument_package_names() (in module
msl.package_manager.cli_argparse), 13

add_argument_quiet() (in module
msl.package_manager.cli_argparse),
13

add_argument_tag() (in module
msl.package_manager.cli_argparse),
13

add_argument_update_cache() (in module
msl.package_manager.cli_argparse), 14

add_argument_yes() (in module
msl.package_manager.cli_argparse),
14

add_parser_authorise() (in module
msl.package_manager.cli_authorise),
14

add_parser_create() (in module
msl.package_manager.cli_create), 14

add_parser_install() (in module
msl.package_manager.cli_install),
14

add_parser_list() (in module
msl.package_manager.cli_list), 15

add_parser_uninstall() (in module
msl.package_manager.cli_uninstall),
15

add_parser_update() (in module

msl.package_manager.cli_update),
15

ArgumentParser (class in
msl.package_manager.cli_argparse),
13

authorise() (in module
msl.package_manager.authorise), 12

C
configure_parser() (in module

msl.package_manager.cli), 13
contains_package_names()

(msl.package_manager.cli_argparse.ArgumentParser
method), 13

create() (in module
msl.package_manager.create), 15

E
execute() (in module

msl.package_manager.cli_authorise),
14

execute() (in module
msl.package_manager.cli_create), 14

execute() (in module
msl.package_manager.cli_install),
14

execute() (in module
msl.package_manager.cli_list), 15

execute() (in module
msl.package_manager.cli_uninstall),
15

execute() (in module
msl.package_manager.cli_update),
15

G
get_command_name()

(msl.package_manager.cli_argparse.ArgumentParser
method), 13

get_email() (in module
msl.package_manager.utils), 19

47

MSL-Package-Manager Documentation, Release 2.5.4

get_username() (in module
msl.package_manager.utils), 19

github() (in module msl.package_manager.utils),
19

I
info() (in module msl.package_manager.utils),

19
install() (in module

msl.package_manager.install), 16
installed() (in module

msl.package_manager.utils), 20

M
main() (in module msl.package_manager.cli), 13
module

msl.package_manager, 12
msl.package_manager.authorise, 12
msl.package_manager.cli, 13
msl.package_manager.cli_argparse, 13
msl.package_manager.cli_authorise,

14
msl.package_manager.cli_create, 14
msl.package_manager.cli_install, 14
msl.package_manager.cli_list, 15
msl.package_manager.cli_uninstall,

15
msl.package_manager.cli_update, 15
msl.package_manager.create, 15
msl.package_manager.install, 16
msl.package_manager.uninstall, 17
msl.package_manager.update, 17
msl.package_manager.utils, 19

msl.package_manager
module, 12

msl.package_manager.authorise
module, 12

msl.package_manager.cli
module, 13

msl.package_manager.cli_argparse
module, 13

msl.package_manager.cli_authorise
module, 14

msl.package_manager.cli_create
module, 14

msl.package_manager.cli_install
module, 14

msl.package_manager.cli_list
module, 15

msl.package_manager.cli_uninstall
module, 15

msl.package_manager.cli_update

module, 15
msl.package_manager.create

module, 15
msl.package_manager.install

module, 16
msl.package_manager.uninstall

module, 17
msl.package_manager.update

module, 17
msl.package_manager.utils

module, 19

O
outdated_pypi_packages() (in module

msl.package_manager.utils), 20

P
parse_args() (in module

msl.package_manager.cli), 13
pypi() (in module msl.package_manager.utils),

20
Python Enhancement Proposals

PEP 8, 35

S
set_log_level() (in module

msl.package_manager.utils), 20

U
uninstall() (in module

msl.package_manager.uninstall), 17
update() (in module

msl.package_manager.update), 17

V
version_info (in module

msl.package_manager), 12

48 Index

	Contents
	Install the MSL Package Manager
	Dependencies

	Command Line Interface
	install
	uninstall
	update
	list
	create
	authorise

	API Usage
	install
	uninstall
	update
	list
	create
	authorise

	MSL Package Manager API Documentation
	Package Structure
	msl.package_manager package
	msl.package_manager.authorise module
	msl.package_manager.cli module
	msl.package_manager.cli_argparse module
	msl.package_manager.cli_authorise module
	msl.package_manager.cli_create module
	msl.package_manager.cli_install module
	msl.package_manager.cli_list module
	msl.package_manager.cli_uninstall module
	msl.package_manager.cli_update module
	msl.package_manager.create module
	msl.package_manager.install module
	msl.package_manager.uninstall module
	msl.package_manager.update module
	msl.package_manager.utils module

	“create” ReadMe
	setup.py
	condatests.py
	command line
	configuration file

	MSL Developers Guide
	Install and set up Python, Git and PyCharm
	Commit changes to a repository
	Use the setup.py and condatests.py scripts
	Edit source code using the style guide

	License
	Developers
	Release Notes
	Version 2.5.4 (2023-06-16)
	Version 2.5.2 (2021-11-08)
	Version 2.5.1 (2021-08-24)
	Version 2.5.0 (2021-05-17)
	Version 2.4.1 (2021-02-20)
	Version 2.4.0 (2020-04-20)
	Version 2.3.0 (2019-06-10)
	Version 2.2.0 (2019-01-06)
	Version 2.1.0 (2018-08-24)
	Version 2.0.0 (2018-07-02)
	Version 1.5.1 (2018-02-23)
	Version 1.5.0 (2018-02-15)
	Version 1.4.1 (2017-10-19)
	Version 1.4.0 (2017-09-19)
	Version 1.3.0 (2017-08-31)
	Version 1.2.0 (2017-08-10)
	Version 1.1.0 (2017-05-09)
	Version 1.0.3 (2017-05-09)
	Version 1.0.2 (2017-03-27)
	Version 1.0.1 (2017-03-03)
	Version 1.0.0 (2017-03-02)
	Version 0.1.0 (2017-02-19)

	Python Module Index
	Index

